Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(4): e14409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973450

RESUMO

Plants have evolved various mechanisms to adapt to the ever-changing external environment. Autophagy is one such mechanism and has been suggested to play a key role in responding to and adapting to abiotic stresses in plants. However, the role of autophagy in adaptation to cold and freezing stresses remains to be characterized in detail. Here, we investigated the role of autophagy in the low-temperature response of Arabidopsis using atg mutants. Both the atg5-1 and atg10-1 mutants exhibited normal freezing tolerance, regardless of cold acclimation. A comparison of fresh weights indicated that the difference in growth between the wild-type and atg plants under cold conditions was rather small compared with that under normal conditions. Analysis of COLD-REGULATED gene expression showed no significant differences between the atg mutants and wild type. Treatment with 3-methyladenine, an inhibitor of autophagy, did not impair the induction of COR15Apro::LUC expression upon exposure to low temperature. Evaluation of autophagic activity using transgenic plants expressing RBCS-mRFP demonstrated that autophagy was rarely induced by cold exposure, even in the dark. Taken together, these data suggest that autophagy is suppressed by low temperatures and is dispensable for cold acclimation and freezing tolerance in Arabidopsis.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Autofagia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/fisiologia , Autofagia/genética , Autofagia/fisiologia , Aclimatação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Congelamento , Mutação , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo
2.
Plant Physiol ; 193(1): 234-245, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37177986

RESUMO

The identification of chemical compounds that affect intracellular processes has greatly contributed to our understanding of plant growth and development. In most cases, these compounds have been identified in germinated seedlings. However, chemical screening using mature plants would benefit and advance our understanding of environmental responses. In this study, we developed a high-throughput screening method using single leaves of mature plants to identify small molecules that affect cold-regulated gene expression. A single excised leaf of Arabidopsis (Arabidopsis thaliana) grown in submerged cultures responded to low temperatures in terms of COLD-REGULATED (COR) gene expression. We used transgenic Arabidopsis harboring a COLD-REGULATED 15A (COR15A) promoter::luciferase (COR15Apro::LUC) construct to screen natural compounds that affect the cold induction of COR15Apro::LUC. This approach allowed us to identify derivatives of 1,4-naphthoquinone as specific inhibitors of COR gene expression. Moreover, 1,4-naphthoquinones appeared to inhibit the rapid induction of upstream C-REPEAT BINDING FACTOR (CBF) transcription factors upon exposure to low temperature, suggesting that 1,4-naphthoquinones alter upstream signaling processes. Our study offers a chemical screening scheme for identifying compounds that affect environmental responses in mature plants. This type of analysis is likely to reveal an unprecedented link between certain compounds and plant environmental responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...