Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cartilage ; : 19476035241258170, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853398

RESUMO

OBJECTIVE: To investigate how running, cycling, and sedentary cardiovascular stress impact biomarkers of cartilage turnover acutely in subjects with knee osteoarthritis (OA). DESIGN: This was a sequential, cross-over, clinical study. Forty subjects with primary knee OA underwent moderate-to-high-intensity cycling, running, and adrenaline infusion on separate days. Blood was sampled before, during, and at 6-time points after intervention. On a control day, similar samples were taken. Biomarkers of type II collagen degradation (C2M, T2CM, Coll2-1, Coll2-1NO2), formation (PRO-C2), and aggrecan degradation (ARGS) were measured. RESULTS: Mean age was 60.4 years, 40% were male, 45% had cumulated Kellgren-Lawrence (KL)-grade (Right + Left knee) of 2 to 3 and 55% had 4 to 6. Analyzing overall changes, area under the curve was significantly lower compared with resting values for ARGS and C2M after cycling and for ARGS after running. Considering individual time points, peak changes in biomarker levels showed reduction in C2M shortly following cycling (T20min = -12.3%, 95% confidence interval [CI]: -19.3% to -5.2%). PRO-C2 increased during cycling (T10min = 14.0%, 95% CI = 4.1% to 23.8%) and running (T20min = 16.5%, 95% CI = 4.3% to 28.6%). T2CM decreased after cycling (T50min = -19.9%, 95% CI = -29.2% to -10.6%), running (T50min = -22.8%, 95% CI = -32.1% to -13.5%), and infusion of adrenaline (peak, T50min = -9.8%, 95% CI = -20.0% to 0.4%). A latent increase was seen in Coll2-1 240 minutes after running (T260min = 21.7%, 95% CI = -1.6% to 45.1%). CONCLUSION: Exercise had an impact on cartilage markers, but it did not suggest any detrimental effect on cartilage. Changes following adrenaline infusion suggest a sympathomimetic influence on the serological composition of biomarkers.

2.
Front Physiol ; 13: 948087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936903

RESUMO

Introduction: Plasma volume (PV) changes in response to physical activity, possibly as a consequence of adrenergic activation. We estimated changes in PV in response to common exercise modalities; cycling and running as well as adrenaline infusion and control at rest. Methods: On separate days, forty circulatory healthy subjects [aged 60 years (range: 42-75)] with knee osteoarthritis underwent moderate-high intensity cycling, running, and intravenous adrenaline infusion to mimic the circulatory response to exercise. Blood samples were obtained from peripheral veins taken at several pre-defined time points before, during, and after the interventions. PV changes were estimated using venous hemoglobin and the derived hematocrit. The temporal associations between PV and selected biomarkers were explored. Results: Changes in PV were observed during all four interventions, and the response to cycling and running was similar. Compared to rest, PV decreased by -14.3% (95% CI: -10.0 to -18.7) after cycling, -13.9% (95% CI: -10.9 to -17.0) after running, and -7.8% (95% CI: -4.2 to -11.5) after adrenaline infusion. Conclusion: PV decreased in response to moderate-high intensity running and cycling. Adrenaline infusion mimicked the PV change observed during exercise, suggesting a separate influence of autonomic control on blood volume homeostasis. In perspective, a temporal association between PV and biomarker dynamics suggests that consideration of PV changes could be relevant when reporting plasma/serum constituents measured during exercise, but more research is needed to confirm this.

3.
J Anaesthesiol Clin Pharmacol ; 38(4): 580-587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36778814

RESUMO

Background and Aims: Anesthesia often reduces mean arterial pressure (MAP) to a level that may compromise cerebral blood flow. We evaluated whether phenylephrine treatment of anesthesia-induced hypotension affects internal carotid artery (ICA) blood flow and whether anesthesia affects ICA flow and CO2 reactivity. Material and Methods: The study included twenty-seven patients (65 ± 11 years; mean ± SD) undergoing esophageal resection (n = 14), stomach resection (n = 12), or a gastroentero anastomosis (n = 1) during combined propofol-remifentanil and thoracic epidural anesthesia. Duplex ultrasound evaluated ICA blood flow. Evaluations were before and after induction of anesthesia, before and after the administration of phenylephrine as part of standard care to treat anesthesia-induced hypotension at a MAP below 60 mmHg, and the hypocapnic reactivity of ICA flow was determined before and during anesthesia. Results: Induction of anesthesia reduced MAP from 108 ± 12 to 66 ± 16 mmHg (P < 0.0001) and ICA flow from 340 ± 92 to 196 ± 52 mL/min (P < 0.0001). Phenylephrine was administered to 24 patients (0.1-0.2 mg) and elevated MAP from 53 ± 8 to 73 ± 8 mmHg (P = 0.0001) and ICA flow from 191 ± 43 to 218 ± 50 mL/min (P = 0.0276). Furthermore, anesthesia reduced the hypocapnic reactivity of ICA flow from 23 (18-33) to 14%/kPa (10-22; P = 0.0068). Conclusion: Combined propofol-remifentanil and thoracic epidural anesthesia affect ICA flow and CO2 reactivity. Phenylephrine partly restored ICA flow indicating that anesthesia-induced hypotension contributes to the reduction in ICA flow.

4.
Front Physiol ; 5: 407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374543

RESUMO

Vasopressor agents may affect cerebral oxygenation (rScO2) as determined by near-infrared spectroscopy on the forehead. This case series evaluated the effect of calcium chloride vs. α and ß-adrenergic receptor agonists on rScO2 in patients (n = 47) undergoing surgery during i.v. anesthesia. Mean arterial pressure (MAP) and cardiac output (CO) were assessed by Model-flow(®) and ephedrine (55 ± 3 vs. 74 ± 9 mmHg; 10 mg, n = 9), phenylephrine (51 ± 5 vs. 78 ± 9 mmHg, 0.1 mg, n = 11), adrenaline (53 ± 3 vs. 72 ± 11 mmHg; 1-2 µg, n = 6), noradrenaline (53 ± 5 vs. 72 ± 12 mmHg; 2-4 µg, n = 11), and calcium chloride (49 ± 7 vs. 57 ± 16 mmHg; 5 mmol, n = 10) increased MAP (all P < 0.05). CO increased with ephedrine (4.3 ± 0.9 vs. 5.3 ± 1.2, P < 0.05) and adrenaline (4.7 ± 1.2 vs. 5.9 ± 1.1 l/min; P = 0.07) but was not significantly affected by phenylephrine (3.9 ± 0.7 vs. 3.6 ± 1.0 l/min), noradrenaline (3.8 ± 1.2 vs. 3.7 ± 0.7 l/min), or calcium chloride (4.0 ± 1.4 vs. 4.1 ± 1.5 l/min). Following administration of ß-adrenergic agents and calcium chloride rScO2 was preserved while after administration of α-adrenergic drugs rScO2 was reduced by app. 2% (P < 0.05). Following α-adrenergic drugs to treat anesthesia-induced hypotension tissue oxygenation is reduced while the use of ß-adrenergic agonists and calcium chloride preserve tissue oxygenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...