Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 738: 139743, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32540601

RESUMO

We analysed how logging residue (LR) piles of common tree species in Finland, Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth), affect nitrogen (N) losses in forest soil after final felling. A Norway spruce dominated stand was clear-cut and followed by two experimental setups to study the nitrous oxide (N2O) emissions and leaching of carbon (C) and N. Experiments consisted of four treatments: tree species treatments consisting of 40 kg m-2 of LR and a control treatment without residues. The C losses were monitored as dissolved organic carbon (DOC), the N losses as ammonium (NH4-N), nitrate (NO3-N) and dissolved organic nitrogen (DON) fluxes and concentrations in soil percolation waters and the N2O emissions as fluxes from the forest soil to the atmosphere. In addition the soil temperatures, the molecular size distribution of the DOC from the soil percolation waters and the origin of the N2O production were determined. The LR piles lowered the soil temperatures and, especially those of birch, increased the concentrations of NO3-N in the soil percolation waters already 1 year after the establishment of the piles. The LR piles increased the NH4-N concentrations. The smallest molecular size fraction (<1 kD) of DOC predominated in all treatments. The N2O fluxes peaked under the piles during the second and third growing seasons; however, the inconsistent fluxes tended to be low. The production of N2O was driven by both nitrification and denitrification processes, the proportion depending on the tree species. Our results indicate that LR piles accelerate N losses 1 year after the clear-cutting, especially NO3-N, which predominates in the soil percolation waters under the birch residues, whereas spruce residues tend to stimulate N2O emissions longer. These results have implications for sustainable forest management practices and nutrition of regrowing vegetation.


Assuntos
Picea , Pinus sylvestris , Betula , Finlândia , Nitrogênio/análise , Óxido Nitroso/análise , Noruega , Solo
2.
Bioresour Technol ; 292: 121893, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31430669

RESUMO

A process model based on hot water extraction (HWE), slow pyrolysis and anaerobic digestion (AD) were used for pine and spruce bark utilisation. First tannins (32 mg/g and 11.8 mg/g, respectively) and polyphenols were recovered via HWE. Then, the residue was pyrolysed to produce biochar (marketable quality), gas (energy source) and liquid fractions. The liquid fraction was further separated into aqueous acidic fraction and to tar fraction. Bark, extracted bark residue and acidic liquid fraction from pyrolysis were treated in AD to produce biomethane and digestate. The methane yields from pine and spruce bark and extracted bark residue were low (from 42 to 96 mLCH4/gVSadded) and showed only small differences. In conclusion, cascade processing can improve the performance of subsequent single processes and utilise biomass sources with higher efficiency. The best processing chain may vary in different cases and the overall energy balance of processing needs further research.


Assuntos
Temperatura Alta , Pirólise , Anaerobiose , Casca de Planta , Água
3.
ChemistryOpen ; 6(5): 610-614, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29046854

RESUMO

Tannins, an abundant group of plant secondary compounds, raise interest in different fields of science, owing to their unique chemical characteristics. In chemical ecology, tannins play a crucial role in plant defense against pathogens, herbivores, and changing environmental conditions. In the food industry and in medicine, tannins are important because of their proven positive effect on human health and disease treatment. Such wide interests fueled studies on tannin chemistry, especially on their flagship ability to precipitate proteins. In this Review, we expand the basic knowledge on tannin chemistry to the newest insights from the field. We focus especially on tannin reactions with different non-protein organic N compounds, as well as the complex interactions of tannins with enzymes, resulting in either an increase or decrease in enzyme activity.

4.
Mycorrhiza ; 25(5): 325-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25355073

RESUMO

Tricholoma matsutake, a highly valued delicacy in Japan and East Asia, is an ectomycorrhizal fungus typically found in a complex soil community of mycorrhizae, soil microbes, and host-tree roots referred to as the shiro in Japan. A curious characteristic of the shiro is an assortment of small rock fragments that have been implicated as a direct source of minerals and trace elements for the fungus. In this study, we measured the mineral content of 14 samples of shiro soil containing live matsutake mycelium and the extent to which the fungus can absorb minerals directly from the rock fragments. X-ray powder diffraction identified major phases of quartz, microcline, orthoclase, and albite in all shiro samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing confirmed the presence of T. matsutake on 32 of 33 rock fragments. Piloderma sp. co-occurred on 40% of fragments and was positively correlated with locations known to produce good mushroom crops. The ability of T. matsutake to absorb trace elements directly from rock fragments was examined in vitro on nutrient-agar plates supplemented with rock fragments from the shiro. In comparison to the mineral content of tissues grown on control media, the concentration of Al, Cu, Fe, Mn, P, and Zn increased from 1.1 to 106.4 times for both T. matsutake and Piloderma sp. Mineral content of dried sporocarps sampled from the study site partially reflected the results of the in vitro study. We discuss the implications of our results with respect to the natural development and artificial culture of this important fungus.


Assuntos
Microbiologia do Solo , Solo/química , Oligoelementos/metabolismo , Tricholoma/metabolismo , Biodiversidade , Finlândia , Tricholoma/crescimento & desenvolvimento
5.
Plant Signal Behav ; 5(7): 817-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20505350

RESUMO

Interest in the problem of plant nitrogen nutrition is increasing. Certain plants can use not only inorganic nitrogen, but also intact amino acids and short peptides. According to our studies, the roots of several agricultural and wild-living plants are able to exude proteases and by using them to create a pool of accessible N. This mini-review offers an overview of the problem of protease exudation by plant roots and its potential role in plant nitrogen nutrition.


Assuntos
Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Raízes de Plantas/metabolismo , Plantas/enzimologia , Raízes de Plantas/enzimologia
6.
Ecology ; 91(2): 370-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20392002

RESUMO

Feedback to climate warming from the carbon balance of terrestrial ecosystems depends critically on the temperature sensitivity of soil organic carbon (SOC) decomposition. Still, the temperature sensitivity is not known for the majority of the SOC, which is tens or hundreds of years old. This old fraction is paradoxically concluded to be more, less, or equally sensitive compared to the younger fraction. Here, we present results that explain these inconsistencies. We show that the temperature sensitivity of decomposition increases remarkably from the youngest annually cycling fraction (Q10 < 2) to a decadally cycling one (Q10 = 4.2-6.9) but decreases again to a centennially cycling fraction (Q10 = 2.4-2.8) in boreal forest soil. Compared to the method used for current global estimates (temperature sensitivity of all SOC equal to that of the total heterotrophic soil respiration), the soils studied will lose 30-45% more carbon in response to climate warming during the next few decades, if there is no change in carbon input. Carbon input, derivative of plant productivity, would have to increase by 100-120%, as compared to the earlier estimated 70-80%, in order to compensate for the accelerated decomposition.


Assuntos
Carbono/química , Solo/análise , Temperatura , Árvores , Regiões Árticas , Modelos Biológicos
7.
Plant Physiol Biochem ; 47(10): 919-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19540770

RESUMO

Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.


Assuntos
Allium/enzimologia , Enzimas/metabolismo , Raízes de Plantas/enzimologia , Proteínas/metabolismo , Allium/metabolismo , Aminoácidos/metabolismo , Animais , Caseínas/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/metabolismo , Enzimas/isolamento & purificação , Exsudatos e Transudatos/enzimologia , Insulina/metabolismo , Espectrometria de Massas , Soroalbumina Bovina/metabolismo
8.
FEMS Microbiol Ecol ; 53(1): 33-40, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329927

RESUMO

The degradability and chemical characteristics of water-extractable dissolved organic carbon (DOC) and nitrogen (DON) from the humus layer of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands were compared in short-term incubation of soil solutions. For all extracts the degradation of DOC and DON was low (12-17% loss) and increased in the order: birch, spruce and pine. In the humus layer under pine a relatively larger pool of rapidly degrading dissolved soil organic matter (DOM) was indicated by the [3H]thymidine incorporation technique, which measures the availability of DOM to bacteria. The degradation of DOC was explained by a decrease in the hydrophilic fraction. For DON, however, both the hydrophilic and hydrophobic fractions tended to decrease during incubation. No major differences in concentrations of hydrophilic and hydrophobic fractions were detected between tree species. Molecular size distribution of DOC and DON, however, revealed slight initial differences between birch and conifers as well as a change in birch extract during incubation. The depletion of very rapidly degrading fractions (e.g., root exudates and compounds from the litter) may explain the low degradability of DOM in the humus layer under birch.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/análise , Árvores , Análise de Variância , Betula , Finlândia , Picea , Pinus sylvestris , Especificidade da Espécie , Timidina/metabolismo , Trítio
9.
Water Res ; 36(20): 4951-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12448542

RESUMO

Sprinkling infiltration in a forested esker leading to artificial recharge of groundwater was studied in Southern Finland. Changes in dissolved organic carbon (DOC) and the molecular size distribution and chemical properties of the organic carbon were investigated during the infiltration process. Artificial groundwater was produced using sprinkling infiltration directly onto the forest floor. One result of lake water infiltration through the organic horizon and I m thick mineral soil layer was a slight net increase in the DOC concentrations from 9.4 mg/L in the infiltration water to 13.2 mg/ L in percolation water. This indicates that the forest soil represents a potential input of organic matter into infiltration water. However, the DOC concentrations decreased by 27-38% as the infiltration water percolated down through the unsaturated soil layer into the groundwater zone. At a distance of 1450 m from the infiltration area, the mean DOC concentration in the groundwater was below the recommended value for drinking water in Finland of 2.0 mg/L. There was a strong reduction in the concentrations of hydrophilic and hydrophobic acids, but only a slight decrease in hydrophilic neutral organic compounds during the infiltration process. The DOC in the production well consisted of low molecular size fractions. Larger molecular size fractions were removed effectively from the water during the infiltration process.


Assuntos
Carbono/análise , Solo , Árvores , Abastecimento de Água , Carbono/química , Filtração , Finlândia , Solubilidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...