Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34665781

RESUMO

BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. ABCB5+ dermal mesenchymal stem cells (ABCB5+ MSCs) possess immunomodulatory, inflammation-dampening, and tissue-healing capacities. In a Col7a1-/- mouse model of RDEB, treatment with ABCB5+ MSCs markedly extended the animals' lifespans.METHODSIn this international, multicentric, single-arm, phase I/IIa clinical trial, 16 patients (aged 4-36 years) enrolled into 4 age cohorts received 3 i.v. infusions of 2 × 106 ABCB5+ MSCs/kg on days 0, 17, and 35. Patients were followed up for 12 weeks regarding efficacy and 12 months regarding safety.RESULTSAt 12 weeks, statistically significant median (IQR) reductions in the Epidermolysis Bullosa Disease Activity and Scarring Index activity (EBDASI activity) score of 13.0% (2.9%-30%; P = 0.049) and the Instrument for Scoring Clinical Outcome of Research for Epidermolysis Bullosa clinician (iscorEB­c) score of 18.2% (1.9%-39.8%; P = 0.037) were observed. Reductions in itch and pain numerical rating scale scores were greatest on day 35, amounting to 37.5% (0.0%-42.9%; P = 0.033) and 25.0% (-8.4% to 46.4%; P = 0.168), respectively. Three adverse events were considered related to the cell product: 1 mild lymphadenopathy and 2 hypersensitivity reactions. The latter 2 were serious but resolved without sequelae shortly after withdrawal of treatment.CONCLUSIONThis trial demonstrates good tolerability, manageable safety, and potential efficacy of i.v. ABCB5+ MSCs as a readily available disease-modifying therapy for RDEB and provides a rationale for further clinical evaluation.TRIAL REGISTRATIONClinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.FUNDINGThe trial was sponsored by RHEACELL GmbH & Co. KG. Contributions by NYF and MHF to this work were supported by the NIH/National Eye Institute (NEI) grants RO1EY025794 and R24EY028767.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Células-Tronco Mesenquimais/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Adulto Jovem
2.
Orphanet J Rare Dis ; 15(1): 292, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076941

RESUMO

BACKGROUND: Hereditary epidermolysis bullosa (EB) comprises a heterogeneous group of rare genodermatoses, which are caused by mutations in genes involved in the maintenance of the structural and functional integrity of dermo-epidermal adhesion in various stratified epithelia. In severe variants, generalized skin disease, extracutaneous manifestations and multi-organ involvement cause considerable morbidity and mortality. Causal and early treatment by re-expression of a respective mutated gene is the major long-term goal in therapy development. However, characterization and targeted modulation of pathogenic molecular cascades in EB also holds great promise as a symptom-relieving approach to ameliorate phenotype, complications and quality of life. Small molecules are chemical structures of less than 900 Da that can diffuse across cell membranes and interfere with target biomolecules, thus influencing their function at different levels. They constitute the vast majority of active components of all approved drugs. METHODS: We performed PubMed and Google Scholar search for publications and screened FDA- and EMA-hosted clinical trial registries to identify studies using small molecule-based drugs for epidermolysis bullosa. Upon detailed analysis this resulted in the identification of a total of 84 studies. RESULTS: We identified 52 publications and 32 registered trials that investigate small molecules for their safety and efficacy as treatment for different aspects of epidermolysis bullosa. Further, a total of 38 different small molecules clinically used in EB were found. Most frequent outcome measures concerned wound healing, reduction in blister numbers, as well as reduction of itch and pain, predominantly for EBS and RDEB. CONCLUSION: We provide a comprehensive summary of the current status of clinical small molecule development for EB and discuss prospects and limitations in orphan drug development for rare conditions like EB.


Assuntos
Epidermólise Bolhosa , Qualidade de Vida , Desenvolvimento de Medicamentos , Epidermólise Bolhosa/tratamento farmacológico , Epidermólise Bolhosa/genética , Humanos , Fenótipo , Pele
3.
J Am Acad Dermatol ; 78(5): 892-901.e7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410318

RESUMO

BACKGROUND: Epidermolysis bullosa simplex (EBS) is a rare genetic, blistering skin disease for which there is no cure. Treatments that address the pathophysiology of EBS are needed. OBJECTIVE: Compare the impact of 1% diacerein cream with placebo in reducing the number of blisters in EBS. METHODS: In a randomized, placebo-controlled, phase 2/3 trial we used a 1% diacerein topical formulation to treat defined skin areas in 17 patients. In a 2-period crossover trial, patients were randomized to either placebo or diacerein for a 4-week treatment and a 3-month follow-up in period 1. After a washout, patients were crossed over during period 2. The prespecified primary end point was the proportion of patients with a reduction of number of blisters by more than 40% from baseline in selected areas over the treatment episode. RESULTS: Of the patients receiving diacerein, 86% in episode 1 and 37.5% in episode 2 met the primary end point (vs 14% and 17% with placebo, respectively). This effect was still significant after the follow-up. Changes in absolute blister numbers were significant for the diacerein group only. No adverse effects were observed. LIMITATIONS: Low patient numbers and no invasive data acquisition because of clinical burden in children. CONCLUSION: This trial provides evidence of the impact of 1% diacerein cream in the treatment of EBS.


Assuntos
Antraquinonas/uso terapêutico , Epidermólise Bolhosa Simples/diagnóstico , Epidermólise Bolhosa Simples/tratamento farmacológico , Produção de Droga sem Interesse Comercial , Administração Tópica , Anti-Inflamatórios , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Seguimentos , Humanos , Masculino , Cooperação do Paciente , Medição de Risco , Índice de Gravidade de Doença , Resultado do Tratamento
5.
J Control Release ; 162(2): 391-9, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22750193

RESUMO

Driven by constantly increasing knowledge about skin immunology, vaccine delivery via the cutaneous route has recently gained renewed interest. Considering its richness in immunocompetent cells, targeting antigens to the skin is considered to be more effective than intramuscular or subcutaneous injections. However, circumvention of the superficial layer of the skin, the stratum corneum, represents the major challenge for cutaneous immunization. An optimal delivery method has to be effective and reliable, but also highly adaptable to specific demands, should avoid the use of hypodermic needles and the requirement of specially trained healthcare workers. The P.L.E.A.S.E. (Precise Laser Epidermal System) device employed in this study for creation of aqueous micropores in the skin fulfills these prerequisites by combining the precision of its laser scanning technology with the flexibility to vary the number, density and the depth of the micropores in a user-friendly manner. We investigated the potential of transcutaneous immunization via laser-generated micropores for induction of specific immune responses and compared the outcomes to conventional subcutaneous injection. By targeting different layers of the skin we were able to bias polarization of T cells, which could be modulated by addition of adjuvants. The P.L.E.A.S.E. device represents a highly effective and versatile platform for transcutaneous vaccination.


Assuntos
Antígenos/administração & dosagem , Lasers , Pele/imunologia , Vacinação/instrumentação , Administração Cutânea , Animais , Linhagem Celular , Citocinas/imunologia , Dextranos/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Fluoresceína-5-Isotiocianato/administração & dosagem , Fluoresceína-5-Isotiocianato/análogos & derivados , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Porosidade , Pele/metabolismo , Suínos , Linfócitos T/imunologia , Vacinação/métodos , beta-Galactosidase/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...