Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 479: 135619, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217935

RESUMO

Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations. For the first time, we show that FSHR binds halogenated BPA derivatives, at 10 nM, a concentration lower than those requires to modulate the activity of nuclear receptors and/or steroidogenesis enzymes. Indeed, bioluminescence assays show that FSHR response is lowered up to 42.36 % in the presence of BPA, up to 32.79 % by chlorinated BPA derivatives and up to 27.04 % by brominated BPA derivatives, at non-cytotoxic concentrations and without modification of basal receptor activity. Moreover, molecular docking, molecular dynamics simulations, and site-directed mutagenesis experiments demonstrate that the halogenated BPA derivatives bind the FSHR transmembrane domain reducing the signal transduction efficiency which lowers the cellular cAMP production and in fine disrupts the physiological effect of FSH. The potential reproductive health risk of exposed individuals was estimated by comparing urinary concentrations (through a collection of human biomonitoring data) with the lowest effective concentrations derived from in vitro cell assays. Our results suggest a potentially high concern for the risk of inhibition of the FSHR pathway. This global approach based on FSHR activity could enable the rapid characterization of the toxicity of halogenated BPA derivatives (or other compounds) and assess the associated risk of exposure to these halogenated BPA derivatives.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Simulação de Acoplamento Molecular , Fenóis , Receptores do FSH , Humanos , Fenóis/toxicidade , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Receptores do FSH/metabolismo , Medição de Risco , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Halogenação , Células HEK293 , Simulação de Dinâmica Molecular
2.
J Chem Inf Model ; 62(24): 6788-6802, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036575

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipids have been shown to stabilize an active conformation of class A G-protein coupled receptors (GPCRs) through a conserved binding site, not present in class B GPCRs. For class B GPCRs, previous molecular dynamics (MD) simulation studies have shown PI(4,5)P2 interacting with the Glucagon receptor (GCGR), which constitutes an important target for diabetes and obesity therapeutics. In this work, we applied MD simulations supported by native mass spectrometry (nMS) to study lipid interactions with GCGR. We demonstrate how tail composition plays a role in modulating the binding of PI(4,5)P2 lipids to GCGR. Specifically, we find the PI(4,5)P2 lipids to have a higher affinity toward the inactive conformation of GCGR. Interestingly, we find that in contrast to class A GPCRs, PI(4,5)P2 appear to stabilize the inactive conformation of GCGR through a binding site conserved across class B GPCRs but absent in class A GPCRs. This suggests differences in the regulatory function of PI(4,5)P2 between class A and class B GPCRs.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Conformação Molecular , Lipídeos/química
3.
QRB Discov ; 3: e19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529288

RESUMO

Coarse-grained (CG) modelling with the Martini force field has come of age. By combining a variety of bead types and sizes with a new mapping approach, the newest version of the model is able to accurately simulate large biomolecular complexes at millisecond timescales. In this perspective, we discuss possible applications of the Martini 3 model in drug discovery and development pipelines and highlight areas for future development. Owing to its high simulation efficiency and extended chemical space, Martini 3 has great potential in the area of drug design and delivery. However, several aspects of the model should be improved before Martini 3 CG simulations can be routinely employed in academic and industrial settings. These include the development of automatic parameterisation protocols for a variety of molecule types, the improvement of backmapping procedures, the description of protein flexibility and the development of methodologies enabling efficient sampling. We illustrate our view with examples on key areas where Martini could give important contributions such as drugs targeting membrane proteins, cryptic pockets and protein-protein interactions and the development of soft drug delivery systems.

4.
J Chem Inf Model ; 61(6): 2869-2883, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048229

RESUMO

Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Proteínas de Membrana , Simulação de Dinâmica Molecular
5.
Biointerphases ; 12(2): 02D405, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476091

RESUMO

Many antimicrobial peptides function by forming pores in the plasma membrane of the target cells. Intriguingly, some of these peptides are very short, and thus, it is not known how they can span the membrane, or whether other mechanisms of cell disruption are dominant. Here, the conformation and orientation of the 14-residue peptaibol SPF-5506-A4 (SPF) are investigated in lipid environments by atomistic and coarse grained molecular dynamics (MD) simulations, circular dichroism, and nuclear magnetic resonance (NMR) experiments. The MD simulations show that SPF is inserted spontaneously in a transmembrane orientation in both 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers resulting in thinning of the bilayers near the peptides, which drives the peptide aggregation. Furthermore, the backbone conformation of the peptide in the bilayer bound state is different from that of the NMR model solved in small bicelles. These results demonstrate that mutual adaption between the peptides and the membrane is likely to be important for pore formation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Peptaibols/química , Proteínas Citotóxicas Formadoras de Poros/química , Dicroísmo Circular , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA