Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 79: 102486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733792

RESUMO

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.

2.
Front Microbiol ; 14: 1198664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555068

RESUMO

Microorganisms in subsurface sediments live from recalcitrant organic matter deposited thousands or millions of years ago. Their catabolic activities are low, but the deep biosphere is of global importance due to its volume. The stability of deeply buried sediments provides a natural laboratory where prokaryotic communities that live in steady state with their environments can be studied over long time scales. We tested if a balance is established between the flow of energy, the microbial community size, and the basal power requirement needed to maintain cells in sediments buried meters below the sea floor. We measured rates of carbon oxidation by sulfate reduction and counted the microbial cells throughout ten carefully selected sediment cores with ages from years to millions of years. The rates of carbon oxidation were converted to power (J s-1 i.e., Watt) using the Gibbs free energy of the anaerobic oxidation of complex organic carbon. We separated energy dissipation by fermentation from sulfate reduction. Similarly, we separated the community into sulfate reducers and non-sulfate reducers based on the dsrB gene, so that sulfate reduction could be related to sulfate reducers. We found that the per-cell sulfate reduction rate was stable near 10-2 fmol C cell-1 day-1 right below the zone of bioturbation and did not decrease with increasing depth and sediment age. The corresponding power dissipation rate was 10-17 W sulfate-reducing cell-1. The cell-specific power dissipation of sulfate reducers in old sediments was similar to the slowest growing anaerobic cultures. The energy from mineralization of organic matter that was not dissipated by sulfate reduction was distributed evenly to all cells that did not possess the dsrB gene, i.e., cells operationally defined as fermenting. In contrast to sulfate reducers, the fermenting cells had decreasing catabolism as the sediment aged. A vast difference in power requirement between fermenters and sulfate reducers caused the microbial community in old sediments to consist of a minute fraction of sulfate reducers and a vast majority of fermenters.

3.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
4.
Heliyon ; 9(3): e14232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967935

RESUMO

We used ancient DNA (aDNA) extraction methods to sequence museum voucher samples of Oligobrachia webbi, a frenulate siboglinid polychaete described from a northern Norwegian fjord over fifty years ago. Our sequencing results indicate a genetic match with the cryptic seep species, Oligobrachia haakonmosbiensis (99% pairwise identity for 574 bp mtCOI fragments). Due to its similarity with O. webbi, the identity of O. haakonmosbiensis has been a matter of debate since its description, which we have now resolved. Furthermore, our results demonstrate that chemosynthesis-based siboglinids, that constitute the bulk of the biomass at Arctic seeps are not seep specialists. Our data on sediment geochemistry and carbon and nitrogen content reveal reduced conditions in fjords/sounds, similar to those at seep systems. Accumulation and decomposition of both terrestrial and marine organic matter results in the buildup of methane and sulfide that apparently can sustain chemosymbiotic fauna. The occurrence of fjords and by extension, highly reducing habitats, could have led to Arctic chemosymbiotic species being relatively generalist with their habitat, as opposed to being seep or vent specialists. Our stable isotope analyses indicate the incorporation of photosynthetically derived carbon in some individuals, which aligns with experiments conducted on frenulates before the discovery of chemosynthesis that demonstrated their ability to take up organic molecules from the surrounding sediment. Since reduced gases in non-seep environments are ultimately sourced from photosynthetic processes, we suggest that the extreme seasonality of the Arctic has resulted in Arctic chemosymbiotic animals seasonally changing their degree of reliance on chemosynthetic partners. Overall, the role of chemosynthesis in Arctic benthos and marine ecosystems and links to photosynthesis may be complex, and more extensive than currently known.

5.
ISME J ; 16(1): 200-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34285365

RESUMO

Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.


Assuntos
Deltaproteobacteria , Sulfatos , Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Oxirredução , Sulfatos/metabolismo , Óxidos de Enxofre/metabolismo
6.
Biodegradation ; 32(3): 251-271, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782778

RESUMO

A previous cultivation-independent investigation of the microbial community structure of natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI) revealed the dominance of uncultured bacterial taxa belonging to the phyla Deferribacterota and Coprothermobacterota and the orders Thermodesulfobacteriales, Thermales, and Burkholderiales. Here we report on a cultivation-dependent approach to identify members of these groups involved in hydrocarbon degradation in the KRI oil and asphalt seeps. For this purpose, we set up anoxic crude oil-degrading enrichment cultures based on cultivation media known to support the growth of members of the above-mentioned taxonomic groups. During 100-200 days incubation periods, nitrate-reducing and fermentative enrichments showed up to 90% degradation of C8-C17 alkanes and up to 28% degradation of C18-C33 alkanes along with aromatic hydrocarbons. Community profiling of the enrichment cultures showed that they were dominated by diverse bacterial taxa, which were rare in situ community members in the investigated seeps. Groups initially targeted by our approach were not enriched, possibly because their members are slow-growing and involved in the degradation of recalcitrant hydrocarbons. Nevertheless, the enriched taxa were taxonomically related to phylotypes recovered from hydrocarbon-impacted environments as well as to characterized bacterial isolates not previously known to be involved in hydrocarbon degradation. Marker genes (assA and bssA), diagnostic for fumarate addition-based anaerobic hydrocarbon degradation, were not detectable in the enrichment cultures by PCR. We conclude that hydrocarbon biodegradation in our enrichments occurred via unknown pathways and synergistic interactions among the enriched taxa. We suggest, that although not representing abundant populations in situ, studies of the cultured close relatives of these taxa will reveal an unrecognized potential for anaerobic hydrocarbon degradation, possibly involving poorly characterized mechanisms.


Assuntos
Hidrocarbonetos , Biodegradação Ambiental , Iraque , Filogenia , RNA Ribossômico 16S/genética
7.
Appl Microbiol Biotechnol ; 104(19): 8467-8478, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32820372

RESUMO

In order to maintain the reservoir pressure during secondary oil production large volumes of seawater are injected into reservoirs. This practice introduces high concentrations of sulfate into the reservoir promoting the growth of sulfate-reducing microorganisms (SRM) and results in the production of an increasing volume of produced water (PW) that needs to be discharged. SRM reduce sulfate to sulfide causing reservoir souring and as a mitigation strategy nitrate is injecting along with the seawater into the reservoir. We used PW from the Halfdan oil field (North Sea) to set up microcosms to determine the best reinjection strategy in order to inhibit SRM activity and minimize the environmental impact of PW during secondary oil production. We discuss the effect of temperature, electron donor, and sulfate and nitrate availability on sulfide production and microbial community composition. Temperature and the terminal electron acceptor played a key role in shaping the microbial community of the microcosms. PW reinjection at 62 °C inhibited SRM activity due to nitrite toxicity by encouraging nitrate reduction to nitrite by thermophilic nitrate reducers, while at 74 °C we observed complete absence of any microbial activity over the course of 150 days. KEY POINTS: • Temperature and the presence/ absence of nitrate shaped the microbial community structure. • Thermophilic nitrate reducers convert nitrate to ammonia with the accumulation of nitrite that inhibits sulfide production. • Nitrite inhibition is the most effective nitrate-based souring mitigation mechanisms. • The reinjection of hot produced water to oil reservoirs is a promising souring mitigation approach.


Assuntos
Bactérias , Campos de Petróleo e Gás , Nitratos , Sulfetos , Temperatura
8.
Proc Natl Acad Sci U S A ; 116(38): 19116-19125, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31427514

RESUMO

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Genoma Bacteriano , Proteoma/análise , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ciclo do Carbono , Movimento Celular , Quimiotaxia , Citocromos/metabolismo , Deltaproteobacteria/classificação , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Oxirredução , Oxigênio/metabolismo , Filogenia , Homologia de Sequência , Sulfetos/metabolismo
9.
Front Microbiol ; 10: 758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031732

RESUMO

Analyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark). Sequencing and qPCR were combined to determine the depth distributions of bacterial and archaeal taxa (16S rRNA genes) and sulfate-reducing microorganisms (SRM) (dsrB gene). Mapping of radionuclides throughout the sediment revealed a region of intense bioturbation at 0-6 cm depth. The transition from bioturbated sediment to the subsurface below (7 cm depth) was marked by a shift from dominant surface populations to common deep biosphere taxa (e.g., Chloroflexi and Atribacteria). Changes in community composition occurred in parallel to drops in microbial activity and abundance caused by reduced energy availability below the mixed sediment surface. These results offer direct evidence for the hypothesis that deep subsurface microbial communities present in Aarhus Bay mainly assemble already centimeters below the sediment surface, below the bioturbation zone.

10.
ISME J ; 13(8): 1920-1932, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30894690

RESUMO

Recent work has shown that subsurface microbial communities assemble by selective survival of surface community members during sediment burial, but it remains unclear to what extent the compositions of the subsurface communities are a product of their founding population at the sediment surface or of the changing geochemical conditions during burial. Here we investigate this question for communities of sulfate-reducing microorganisms (SRMs). We collected marine sediment samples from the upper 3-5 m at four geochemically contrasting sites in the Skagerrak and Baltic Sea and measured SRM abundance (quantitative PCR of dsrB), metabolic activity (radiotracer rate measurements), and community composition (Illumina sequencing of dsrB amplicons). These data showed that SRM abundance, richness, and phylogenetic clustering as determined by the nearest taxon index peaked below the bioturbation zone and above the depth of sulfate depletion. Minimum cell-specific rates of sulfate reduction did not vary substantially between sites. SRM communities at different sites were best distinguished based on their composition of amplicon sequence variants (ASVs), while communities in different geochemical zones were best distinguished based on their composition of SRM families. This demonstrates environmental filtering of SRM communities in sediment while a site-specific fingerprint of the founding community is retained.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota , Sulfatos/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Sedimentos Geológicos/análise , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/análise , Água do Mar/microbiologia
11.
Front Microbiol ; 9: 2038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233524

RESUMO

Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.

12.
Environ Microbiol ; 20(8): 2927-2940, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051650

RESUMO

Seafloor microorganisms impact global carbon cycling by mineralizing vast quantities of organic matter (OM) from pelagic primary production, which is predicted to increase in the Arctic because of diminishing sea ice cover. We studied microbial interspecies-carbon-flow during anaerobic OM degradation in arctic marine sediment using stable isotope probing. We supplemented sediment incubations with 13 C-labeled cyanobacterial necromass (spirulina), mimicking fresh OM input, or acetate, an important OM degradation intermediate and monitored sulfate reduction rates and concentrations of volatile fatty acids (VFAs) during substrate degradation. Sequential 16S rRNA gene and transcript amplicon sequencing and fluorescence in situ hybridization combined with Raman microspectroscopy revealed that only few bacterial species were the main degraders of 13 C-spirulina necromass. Psychrilyobacter, Psychromonas, Marinifilum, Colwellia, Marinilabiaceae and Clostridiales species were likely involved in the primary hydrolysis and fermentation of spirulina. VFAs, mainly acetate, produced from spirulina degradation were mineralized by sulfate-reducing bacteria and an Arcobacter species. Cellular activity of Desulfobacteraceae and Desulfobulbaceae species during acetoclastic sulfate reduction was largely decoupled from relative 16S rRNA gene abundance shifts. Our findings provide new insights into the identities and physiological constraints that determine the population dynamics of key microorganisms during complex OM degradation in arctic marine sediments.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Sulfetos/metabolismo , Regiões Árticas , Ácidos Graxos Voláteis/metabolismo , Hibridização in Situ Fluorescente , Oxirredução , RNA Ribossômico 16S/genética
13.
J Hazard Mater ; 353: 127-134, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29660698

RESUMO

The risk of oil spills in cold marine environments is expected to increase in response to trans-Arctic shipping and as Arctic oil reserves get exploited. Marine hydrocarbon-degrading microbes can reduce the impact of spilled hydrocarbons, but their degradation capabilities at low temperature are yet to be uncovered. We combined DNA amplicon sequencing and chemometrics to investigate the effect of decreasing temperature (0-15 °C) on the succession and function of hydrocarbon-degrading bacteria in seawater. The bacterial community and degradation patterns were investigated at time points when a similar amount of hydrocarbons was mineralised at the different temperatures. This allowed decomposing the effect of temperature into a main component related to the reduced microbial activity at low temperature and a secondary effect. The reduced microbial activity at low temperature delayed the microbial community succession and degradation rates. The secondary effect of temperature was most pronounced at 0 °C, where (1) degradation of the least water-soluble n-alkanes (>C12) was suppressed in contrast to a relative stronger degradation of the most water-soluble n-alkanes (

Assuntos
Hidrocarbonetos/metabolismo , Microbiota , Água do Mar/microbiologia , Temperatura , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , RNA Ribossômico 16S/genética
14.
Front Microbiol ; 9: 309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551997

RESUMO

The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM) there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT) are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

15.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939599

RESUMO

Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Bactérias/classificação , Bactérias/genética , Baías/microbiologia , DNA Bacteriano/genética , Dinamarca , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
16.
Front Microbiol ; 8: 1198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713339

RESUMO

Marine surface sediments, which are replete with sulfate, are typically considered to be devoid of endogenous methanogenesis. Yet, methanogenic archaea are present in those sediments, suggesting a potential for methanogenesis. We used an isotope dilution method based on sediment bag incubation and spiking with 13C-CH4 to quantify CH4 turnover rates in sediment from Aarhus Bay, Denmark. In two independent experiments, highest CH4 production and oxidation rates (>200 pmol cm-3 d-1) were found in the top 0-2 cm, below which rates dropped below 100 pmol cm-3 d-1 in all other segments down to 16 cm. This drop in overall methane turnover with depth was accompanied by decreasing rates of organic matter mineralization with depth. Molecular analyses based on quantitative PCR and MiSeq sequencing of archaeal 16S rRNA genes showed that the abundance of methanogenic archaea also peaked in the top 0-2 cm segment. Based on the community profiling, hydrogenotrophic and methylotrophic methanogens dominated among the methanogenic archaea in general, suggesting that methanogenesis in surface sediment could be driven by both CO2 reduction and fermentation of methylated compounds. Our results show the existence of elevated methanogenic activity and a dynamic recycling of CH4 at low concentration in sulfate-rich marine surface sediment. Considering the common environmental conditions found in other coastal systems, we speculate that such a cryptic methane cycling can be ubiquitous.

17.
Sci Rep ; 7(1): 5680, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720809

RESUMO

The study of active microbial populations in deep, energy-limited marine sediments has extended our knowledge of the limits of life on Earth. Typically, microbial activity in the deep biosphere is calculated by transport-reaction modelling of pore water solutes or from experimental measurements involving radiotracers. Here we modelled microbial activity from the degree of D:L-aspartic acid racemization in microbial necromass (remains of dead microbial biomass) in sediments up to ten million years old. This recently developed approach (D:L-amino acid modelling) does not require incubation experiments and is highly sensitive in stable, low-activity environments. We applied for the first time newly established constraints on several important input parameters of the D:L-amino acid model, such as a higher aspartic acid racemization rate constant and a lower cell-specific carbon content of sub-seafloor microorganisms. Our model results show that the pool of necromass amino acids is turned over by microbial activity every few thousand years, while the turnover times of vegetative cells are in the order of years to decades. Notably, microbial turnover times in million-year-old sediment from the Peru Margin are up to 100-fold shorter than previous estimates, highlighting the influence of microbial activities on element cycling over geologic time scales.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Aminoácidos/química , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biomassa , Sedimentos Geológicos/química , RNA Ribossômico 16S/análise
18.
Environ Microbiol Rep ; 9(4): 397-403, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488795

RESUMO

Calditrichaeota is a recently recognized bacterial phylum with three cultured representatives, isolated from hydrothermal vents. Here we expand the phylogeny and ecology of this novel phylum with metagenome-derived and single-cell genomes from six uncultivated bacteria previously not recognized as members of Calditrichaeota. Using 16S rRNA gene sequences from these genomes, we then identified 322 16S rRNA gene sequences from cultivation-independent studies that can now be classified as Calditrichaeota for the first time. This dataset was used to re-analyse a collection of 16S rRNA gene amplicon datasets from marine sediments showing that the Calditrichaeota are globally distributed in the seabed at high abundance, making up to 6.7% of the total bacterial community. This wide distribution and high abundance of Calditrichaeota in cold marine sediment has gone unrecognized until now. All Calditrichaeota genomes show indications of a chemoorganoheterotrophic metabolism with the potential to degrade detrital proteins through the use of extracellular peptidases. Most of the genomes contain genes encoding proteins that confer O2 tolerance, consistent with the relatively high abundance of Calditrichaeota in surficial bioturbated part of the seabed and, together with the genes encoding extracellular peptidases, suggestive of a general ecophysiological niche for this newly recognized phylum in marine sediment.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Proteínas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , DNA Bacteriano/genética , Metagenoma , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
19.
Proc Natl Acad Sci U S A ; 114(11): 2940-2945, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242677

RESUMO

Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.


Assuntos
Evolução Biológica , Sedimentos Geológicos/microbiologia , Metagenômica , Microbiota , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Biomassa , Variação Genética , Metagenômica/métodos , Mutação
20.
Front Microbiol ; 8: 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220111

RESUMO

Cold marine sediments harbor endospores of fermentative and sulfate-reducing, thermophilic bacteria. These dormant populations of endospores are believed to accumulate in the seabed via passive dispersal by ocean currents followed by sedimentation from the water column. However, the magnitude of this process is poorly understood because the endospores present in seawater were so far not identified, and only the abundance of thermophilic sulfate-reducing endospores in the seabed has been quantified. We investigated the distribution of thermophilic fermentative endospores (TFEs) in water column and sediment of Aarhus Bay, Denmark, to test the role of suspended dispersal and determine the rate of endospore deposition and the endospore abundance in the sediment. We furthermore aimed to determine the time course of reactivation of the germinating TFEs. TFEs were induced to germinate and grow by incubating pasteurized sediment and water samples anaerobically at 50°C. We observed a sudden release of the endospore component dipicolinic acid immediately upon incubation suggesting fast endospore reactivation in response to heating. Volatile fatty acids (VFAs) and H2 began to accumulate exponentially after 3.5 h of incubation showing that reactivation was followed by a short phase of outgrowth before germinated cells began to divide. Thermophilic fermenters were mainly present in the sediment as endospores because the rate of VFA accumulation was identical in pasteurized and non-pasteurized samples. Germinating TFEs were identified taxonomically by reverse transcription, PCR amplification and sequencing of 16S rRNA. The water column and sediment shared the same phylotypes, thereby confirming the potential for seawater dispersal. The abundance of TFEs was estimated by most probable number enumeration, rates of VFA production, and released amounts of dipicolinic acid during germination. The surface sediment contained ∼105-106 inducible TFEs cm-3. TFEs thus outnumber thermophilic sulfate-reducing endospores by an order of magnitude. The abundance of cultivable TFEs decreased exponentially with sediment depth with a half-life of 350 years. We estimate that 6 × 109 anaerobic thermophilic endospores are deposited on the seafloor per m2 per year in Aarhus Bay, and that these thermophiles represent >10% of the total endospore community in the surface sediment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...