Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3033, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194102

RESUMO

Through stochastic simulations, accuracies of breeding values and response to selection were assessed under traditional pedigree-(BLUP) and genomic-based evaluation methods (GBLUP) in forest tree breeding. The latter provides a methodological foundation for genomic selection. We evaluated the impact of clonal replication in progeny testing on the response to selection realized in seed orchards under variable marker density and target effective population sizes. We found that clonal replication in progeny trials boosted selection accuracy, thus providing additional genetic gains under BLUP. While a similar trend was observed for GBLUP, however, the added gains did not surpass those under BLUP. Therefore, breeding programs deploying extensive progeny testing with clonal propagation might not benefit from the deployment of genomic information. These findings could be helpful in the context of operational breeding programs.


Assuntos
Florestas , Genoma de Planta/genética , Genômica/métodos , Melhoramento Vegetal/métodos , Seleção Genética/genética , Árvores/genética , Linhagem
2.
Heredity (Edinb) ; 115(6): 547-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26126540

RESUMO

Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.


Assuntos
Modelos Genéticos , Picea/genética , Seleção Genética , Colúmbia Britânica , Genética Populacional , Genótipo , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único
3.
Mol Ecol Resour ; 13(2): 306-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23311503

RESUMO

Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Populus/genética , Mapeamento Cromossômico , Genótipo , Populus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...