Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(12): 2739-2747, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37936057

RESUMO

Parkinson's disease, a neurodegenerative disease that affects 15 million people worldwide, is characterized by deposition of α-synuclein into Lewy Bodies in brain neurons. Although this disease is prevalent worldwide, a therapy or cure has yet to be found. Several small compounds have been reported to disrupt fibril formation. Among these compounds is a molecular tweezer known as CLR01 that targets lysine and arginine residues. This study aims to characterize how CLR01 interacts with various proteoforms of α-synuclein and how the structure of α-synuclein is subsequently altered. Native mass spectrometry (nMS) measurements of α-synuclein/CLR01 complexes reveal that multiple CLR01 molecules can bind to α-synuclein proteoforms such as α-synuclein phosphorylated at Ser-129 and α-synuclein bound with copper and manganese ions. The binding of one CLR01 molecule shifts the ability for α-synuclein to bind other ligands. Electron capture dissociation (ECD) with Fourier transform-ion cyclotron resonance (FT-ICR) top-down (TD) mass spectrometry of α-synuclein/CLR01 complexes pinpoints the locations of the modifications on each proteoform and reveals that CLR01 binds to the N-terminal region of α-synuclein. CLR01 binding compacts the gas-phase structure of α-synuclein, as shown by ion mobility-mass spectrometry (IM-MS). These data suggest that when multiple CLR01 molecules bind, the N-terminus of α-synuclein shifts toward a more compact state. This compaction suggests a mechanism for CLR01 halting the formation of oligomers and fibrils involved in many neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doenças Neurodegenerativas/metabolismo , Espectrometria de Massas , Doença de Parkinson/metabolismo , Encéfalo/metabolismo
2.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549866

RESUMO

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Organofosfatos/farmacologia , SARS-CoV-2 , Proteínas Amiloidogênicas , Mamíferos
4.
JACS Au ; 2(9): 2187-2202, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186568

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.

6.
Commun Biol ; 4(1): 1076, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521989

RESUMO

Lysine-selective molecular tweezers are promising drug candidates against proteinopathies, viral infection, and bacterial biofilm. Despite demonstration of their efficacy in multiple cellular and animal models, important questions regarding their mechanism of action, including cell penetrance and intracellular distribution, have not been answered to date. The main impediment to answering these questions has been the low intrinsic fluorescence of the main compound tested to date, called CLR01. Here, we address these questions using new fluorescently labeled molecular tweezers derivatives. We show that these compounds are internalized in neurons and astrocytes, at least partially through dynamin-dependent endocytosis. In addition, we demonstrate that the molecular tweezers concentrate rapidly in acidic compartments, primarily lysosomes. Accumulation of molecular tweezers in lysosomes may occur both through the endosomal-lysosomal pathway and via the autophagy-lysosome pathway. Moreover, by visualizing colocalization of molecular tweezers, lysosomes, and tau aggregates we show that lysosomes likely are the main site for the intracellular anti-amyloid activity of molecular tweezers. These findings have important implications for the mechanism of action of molecular tweezers in vivo, explaining how administration of low doses of the compounds achieves high effective concentrations where they are needed, and supporting the development of these compounds as drugs for currently cureless proteinopathies.


Assuntos
Astrócitos/metabolismo , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Endossomos/metabolismo , Lisina/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Organofosfatos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL
7.
Cell Chem Biol ; 28(9): 1310-1320.e5, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33852903

RESUMO

Biofilms are rigid and largely impenetrable three-dimensional matrices constituting virulence determinants of various pathogenic bacteria. Here, we demonstrate that molecular tweezers, unique supramolecular artificial receptors, modulate biofilm formation of Staphylococcus aureus. In particular, the tweezers affect the structural and assembly properties of phenol-soluble modulin α1 (PSMα1), a biofilm-scaffolding functional amyloid peptide secreted by S. aureus. The data reveal that CLR01, a diphosphate tweezer, exhibits significant S. aureus biofilm inhibition and disrupts PSMα1 self-assembly and fibrillation, likely through inclusion of lysine side chains of the peptide. In comparison, different peptide binding occurs in the case of CLR05, a tweezer containing methylenecarboxylate units, which exhibits lower affinity for the lysine residues yet disrupts S. aureus biofilm more strongly than CLR01. Our study points to a possible role for molecular tweezers as potent biofilm inhibitors and antibacterial agents, particularly against untreatable biofilm-forming and PSM-producing bacteria, such as methicillin-resistant S. aureus.


Assuntos
Amiloide/antagonistas & inibidores , Antibacterianos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , Proteínas Hemolisinas/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Amiloide/metabolismo , Antibacterianos/química , Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Testes de Sensibilidade Microbiana , Pinças Ópticas , Staphylococcus aureus/metabolismo
9.
Alzheimers Res Ther ; 13(1): 6, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397489

RESUMO

BACKGROUND: Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein aggregation. A lead MT, called CLR01, has been demonstrated to inhibit the aggregation and toxicity of multiple amyloidogenic proteins in vitro and in vivo. Previously, we evaluated the effect of CLR01 in the 3 × Tg mouse model of Alzheimer's disease, which overexpresses mutant human presenilin 1, amyloid ß-protein precursor, and tau and found that subcutaneous administration of the compound for 1 month led to a robust reduction of amyloid plaques, neurofibrillary tangles, and microgliosis. CLR01 also has been demonstrated to inhibit tau aggregation in vitro and tau seeding in cell culture, yet because in Alzheimer's disease (AD) and in the 3 × Tg model, tau hyperphosphorylation and aggregation are thought to be downstream of Aß insults, the study in this model left open the question whether CLR01 affected tau in vivo directly or indirectly. METHODS: To determine if CLR01 could ameliorate tau pathology directly in vivo, we tested the compound similarly using the P301S-tau (line PS19) mouse model. Mice were administered 0.3 or 1.0 mg/kg per day CLR01 and tested for muscle strength and behavioral deficits, including anxiety- and disinhibition-like behavior. Their brains then were analyzed by immunohistochemical and biochemical assays for pathological forms of tau, neurodegeneration, and glial pathology. RESULTS: CLR01 treatment ameliorated muscle-strength deterioration, anxiety-, and disinhibition-like behavior. Improved phenotype was associated with decreased levels of pathologic tau forms, suggesting that CLR01 exerts a direct effect on tau in vivo. Limitations of the study included a relatively short treatment period of the mice at an age in which full pathology is not yet developed. In addition, high variability in this model lowered the statistical significance of the findings of some outcome measures. CONCLUSIONS: The findings suggest that CLR01 is a particularly attractive candidate for the treatment of AD because it targets simultaneously the two major pathogenic proteins instigating and propagating the disease, amyloid ß-protein (Aß), and tau, respectively. In addition, our study suggests that CLR01 can be used for the treatment of other tauopathies in the absence of amyloid pathology.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares , Proteínas tau/genética
10.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926779

RESUMO

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Proteínas do Envelope Viral/efeitos dos fármacos , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Arginina/química , Betacoronavirus/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Lipídeos/química , Lisina/química , Espectroscopia de Ressonância Magnética , Organofosfatos/química , SARS-CoV-2 , Proteínas Secretadas pela Vesícula Seminal/química , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo , Zika virus/efeitos dos fármacos
11.
Nat Commun ; 11(1): 4885, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985503

RESUMO

Parkinson's disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Organofosfatos/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Substâncias Protetoras/administração & dosagem , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
ACS Chem Neurosci ; 11(15): 2243-2255, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32559370

RESUMO

Oligomers of amyloid ß-protein (Aß) are thought to be the proximal toxic agents initiating the neuropathologic process in Alzheimer's disease (AD). Therefore, targeting the self-assembly and oligomerization of Aß has been an important strategy for designing AD therapeutics. In parallel, research into the metallobiology of AD has shown that Zn2+ can strongly modulate the aggregation of Aß in vitro and both promote and inhibit the neurotoxicity of Aß, depending on the experimental conditions. Thus, successful inhibitors of Aß self-assembly may have to inhibit the toxicity not only of Aß oligomers themselves but also of Aß-Zn2+ complexes. However, there has been relatively little research investigating the effects of Aß self-assembly and toxicity inhibitors in the presence of Zn2+. Our group has characterized previously a series of Aß42 C-terminal fragments (CTFs), some of which have been shown to inhibit Aß oligomerization and neurotoxicity. Here, we asked whether three CTFs shown to be potent inhibitors of Aß42 toxicity maintained their activity in the presence of Zn2+. Biophysical analysis showed that the CTFs had different effects on oligomer, ß-sheet, and fibril formation by Aß42-Zn2+ complexes. However, cell viability experiments in differentiated PC-12 cells incubated with Aß42-Zn2+ complexes in the absence or presence of these CTFs showed that the CTFs completely lost their inhibitory activity in the presence of Zn2+ even when applied at 10-fold excess relative to Aß42. In light of these results, we tested another inhibitor, the molecular tweezer CLR01, which coincidentally had been shown to have a high affinity for Zn2+, suggesting that it could disrupt both Aß42 oligomerization and Aß42-Zn2+ complexation. Indeed, we found that CLR01 effectively inhibited the toxicity of Aß42-Zn2+ complexes. Moreover, it did so at a lower concentration than needed for inhibiting the toxicity of Aß42 alone. In agreement with these results, CLR01 inhibited ß-sheet and fibril formation in Aß42-Zn2+ complexes. Our data suggest that, for the development of efficient therapeutic agents, inhibitors of Aß self-assembly and toxicity should be examined in the presence of relevant metal ions and that molecular tweezers may be particularly attractive candidates for therapy development.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/toxicidade , Humanos , Íons , Fragmentos de Peptídeos
13.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32087148

RESUMO

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Assuntos
Autofagia/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Organofosfatos/administração & dosagem , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Corpo Celular/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/metabolismo , Doenças Neurodegenerativas/etiologia , Organofosfatos/farmacologia , Resultado do Tratamento
14.
Front Chem ; 7: 657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632951

RESUMO

Molecular tweezers (MTs) are supramolecular host molecules equipped with two aromatic pincers linked together by a spacer (Gakh, 2018). They are endowed with fascinating properties originating from their ability to hold guests between their aromatic pincers (Chen and Whitlock, 1978; Zimmerman, 1991; Harmata, 2004). MTs are finding an increasing number of medicinal applications, e.g., as bis-intercalators for DNA such as the anticancer drug Ditercalinium (Gao et al., 1991), drug activity reverters such as the bisglycoluril tweezers Calabadion 1 (Ma et al., 2012) as well as radioimmuno detectors such as Venus flytrap clusters (Paxton et al., 1991). We recently embarked on a program to create water-soluble tweezers which selectively bind the side chains of lysine and arginine inside their cavity. This unique recognition mode is enabled by a torus-shaped, polycyclic framework, which is equipped with two hydrophilic phosphate groups. Cationic amino acid residues are bound by the synergistic effect of disperse, hydrophobic, and electrostatic interactions in a kinetically fast reversible process. Interactions of the same kind play a key role in numerous protein-protein interactions, as well as in pathologic protein aggregation. Therefore, these particular MTs show a high potential to disrupt such events, and indeed inhibit misfolding and self-assembly of amyloidogenic polypeptides without toxic side effects. The mini-review provides insight into the unique binding mode of MTs both toward peptides and aggregating proteins. It presents the synthesis of the lead compound CLR01 and its control, CLR03. Different biophysical experiments are explained which elucidate and help to better understand their mechanism of action. Specifically, we show how toxic aggregates of oligomeric and fibrillar protein species are dissolved and redirected to form amorphous, benign assemblies. Importantly, these new chemical tools are shown to be essentially non-toxic in vivo. Due to their reversible moderately tight binding, these agents are not protein-, but rather process-specific, which suggests a broad range of applications in protein misfolding events. Thus, MTs are highly promising candidates for disease-modifying therapy in early stages of neurodegenerative diseases. This is an outstanding example in the evolution of supramolecular concepts toward biological application.

15.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165513, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319154

RESUMO

Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder that has no cure and very limited treatment options. MSA is characterized by deposition of fibrillar α-synuclein (α-syn) in glial cytoplasmic inclusions in oligodendrocytes. Similar to other synucleinopathies, α-syn self-assembly is thought to be a key pathologic event and a prominent target for disease modification in MSA. Molecular tweezers are broad-spectrum nanochaperones that prevent formation of toxic protein assemblies and enhance their clearance. The current lead compound, CLR01, has been shown to inhibit α-syn aggregation but has not yet been tested in the context of MSA. To fill this gap, here, we conducted a proof-of-concept study to assess the efficacy of CLR01 in remodeling MSA-like α-syn pathology in the PLP-α-syn mouse model of MSA. Six-month-old mice received intracerebroventricular CLR01 (0.3 or 1 mg/kg per day) or vehicle for 32 days. Open-field test revealed a significant, dose-dependent amelioration of an anxiety-like phenotype. Subsequently, immunohistochemical and biochemical analyses showed dose-dependent reduction of pathological and seeding-competent forms of α-syn, which correlated with the behavioral phenotype. CLR01 treatment also promoted dopaminergic neuron survival in the substantia nigra. To our knowledge, this is the first demonstration of an agent that reduces formation of putative high-molecular-weight oligomers and seeding-competent α-syn in a mouse model of MSA, supporting the view that these species are key to the neurodegenerative process and its cell-to-cell progression in MSA. Our study suggests that CLR01 is an attractive therapeutic candidate for disease modification in MSA and related synucleinopathies, supporting further preclinical development.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Organofosfatos/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Masculino , Camundongos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Fármacos Neuroprotetores/farmacologia , Organofosfatos/farmacologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
16.
ACS Chem Biol ; 14(6): 1363-1379, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31046227

RESUMO

Self-assembly of the microtubule-associated protein tau into neurotoxic oligomers, fibrils, and paired helical filaments, and cell-to-cell spreading of these pathological tau species are critical processes underlying the pathogenesis of Alzheimer's disease and other tauopathies. Modulating the self-assembly process and inhibiting formation and spreading of such toxic species are promising strategies for therapy development. A challenge in investigating tau self-assembly in vitro is that, unlike most amyloidogenic proteins, tau does not aggregate in the absence of posttranslational modifications (PTM), aggregation inducers, or preformed seeds. The most common induction method is addition of polyanions, such as heparin; yet, this artificial system may not represent adequately tau self-assembly in vivo, which is driven by aberrant phosphorylation and other PTMs, potentially leading to in vitro data that do not reflect the behavior of tau and its interaction with modulators in vivo. To tackle these challenges, methods for in vitro phosphorylation of tau to produce aggregation-competent forms recently have been introduced ( Despres et al. ( 2017 ) Proc. Natl. Acad. Sci. U.S.A. , 114 , 9080 - 9085 ). However, the oligomerization, seeding, and interaction with assembly modulators of the different forms of tau have not been studied to date. To address these knowledge gaps, we compared here side-by-side the self-assembly and seeding activity of heparin-induced tau with two forms of in vitro phosphorylated tau and tested how the molecular tweezer CLR01, a negatively charged compound, affected these processes. Tau was phosphorylated by incubation either with activated extracellular signal-regulated kinase 2 or with a whole rat brain extract. Seeding activity was measured using a fluorescence-resonance energy transfer-based biosensor-cell method. We also used solution-state NMR to investigate the binding sites of CLR01 on tau and how they were impacted by phosphorylation. Our systematic structure-activity relationship study demonstrates that heparin-induced tau behaves differently from in vitro phosphorylated tau. The aggregation rates of the different forms are distinct as is the intracellular localization of the induced aggregates, which resemble brain-derived tau strains suggesting that heparin-induced tau and in vitro phosphorylated tau have different conformations, properties, and activities. CLR01 inhibits aggregation and seeding of both heparin-induced and in vitro phosphorylated tau dose-dependently, although heparin induction interferes with the interaction between CLR01 and tau.


Assuntos
Heparina/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Fosforilação , Ratos , Proteínas tau/antagonistas & inibidores
17.
J Biol Chem ; 294(10): 3501-3513, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30602569

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause 15-20% of familial amyotrophic lateral sclerosis (fALS) cases. The resulting amino acid substitutions destabilize SOD1's protein structure, leading to its self-assembly into neurotoxic oligomers and aggregates, a process hypothesized to cause the characteristic motor-neuron degeneration in affected individuals. Currently, effective disease-modifying therapy is not available for ALS. Molecular tweezers prevent formation of toxic protein assemblies, yet their protective action has not been tested previously on SOD1 or in the context of ALS. Here, we tested the molecular tweezer CLR01-a broad-spectrum inhibitor of the self-assembly and toxicity of amyloid proteins-as a potential therapeutic agent for ALS. Using recombinant WT and mutant SOD1, we found that CLR01 inhibited the aggregation of all tested SOD1 forms in vitro Next, we examined whether CLR01 could prevent the formation of misfolded SOD1 in the G93A-SOD1 mouse model of ALS and whether such inhibition would have a beneficial therapeutic effect. CLR01 treatment decreased misfolded SOD1 in the spinal cord significantly. However, these histological findings did not correlate with improvement of the disease phenotype. A small, dose-dependent decrease in disease duration was found in CLR01-treated mice, relative to vehicle-treated animals, yet motor function did not improve in any of the treatment groups. These results demonstrate that CLR01 can inhibit SOD1 misfolding and aggregation both in vitro and in vivo, but raise the question whether such inhibition is sufficient for achieving a therapeutic effect. Additional studies in other less aggressive ALS models may be needed to determine the therapeutic potential of this approach.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Mutação , Organofosfatos/farmacologia , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Sítios de Ligação , Peso Corporal/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Modelos Animais de Doenças , Camundongos , Força Muscular/efeitos dos fármacos , Organofosfatos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase-1/metabolismo , Análise de Sobrevida
18.
J Am Soc Mass Spectrom ; 30(1): 16-23, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30062477

RESUMO

Native top-down mass spectrometry (MS) and ion mobility spectrometry (IMS) were applied to characterize the interaction of a molecular tweezer assembly modulator, CLR01, with tau, a protein believed to be involved in a number of neurodegenerative disorders, including Alzheimer's disease. The tweezer CLR01 has been shown to inhibit aggregation of amyloidogenic polypeptides without toxic side effects. ESI-MS spectra for different forms of tau protein (full-length, fragments, phosphorylated, etc.) in the presence of CLR01 indicate a primary binding stoichiometry of 1:1. The relatively high charging of the protein measured from non-denaturing solutions is typical of intrinsically disordered proteins, such as tau. Top-down mass spectrometry using electron capture dissociation (ECD) is a tool used to determine not only the sites of post-translational modifications but also the binding site(s) of non-covalent interacting ligands to biomolecules. The intact protein and the protein-modulator complex were subjected to ECD-MS to obtain sequence information, map phosphorylation sites, and pinpoint the sites of inhibitor binding. The ESI-MS study of intact tau proteins indicates that top-down MS is amenable to the study of various tau isoforms and their post-translational modifications (PTMs). The ECD-MS data point to a CLR01 binding site in the microtubule-binding region of tau, spanning residues K294-K331, which includes a six-residue nucleating segment PHF6 (VQIVYK) implicated in aggregation. Furthermore, ion mobility experiments on the tau fragment in the presence of CLR01 and phosphorylated tau reveal a shift towards a more compact structure. The mass spectrometry study suggests a picture for the molecular mechanism of the modulation of protein-protein interactions in tau by CLR01. Graphical Abstract ᅟ.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Organofosfatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteínas tau/química , Proteínas tau/metabolismo , Sítios de Ligação , Hidrocarbonetos Aromáticos com Pontes/química , Concentração de Íons de Hidrogênio , Organofosfatos/química , Fosforilação
19.
Chemistry ; 24(44): 11332-11343, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30015416

RESUMO

A new synthetic access to molecular tweezers with one or two aliphatic phosphate ester groups in the central benzene spacer-unit is presented. Alkynyl ester groups offer the prospect to attach additional functional units by click chemistry and greatly broaden the scope of these tools for chemical biology. We present two alternative strategies: the trichloroacetonitrile method involves activation of only one OH group of each phosphoric acid substituent by way of trichloroacetimidate intermediates and subsequent introduction of an aliphatic ester alcohol moiety. The method is versatile, robust and combines simple workup with high yields. Mono- and disubstituted novel host structures are thus accessible in a convenient way. Alternatively, the phosphoramidite strategy activates the hydroquinone precursor by way of phosphoramidite intermediates and couples the desired ester alcohols followed by mild oxidation to the desired phosphate esters. Each step of the synthesis is carried out at very mild conditions and allows to combine sensitive host candidates and recognition elements. After neutralization of the phosphoric acids to water-soluble tri- and tetra-anions the cavities of the new tweezer derivatives are open to bind lysine and arginine as well as peptidic guests. The concept of introducing clickable alkynyl phosphates to free OH groups may be transferred to other major macrocyclic host classes to introduce additional recognition elements, biomolecules or fluorescence labels.

20.
Methods Mol Biol ; 1777: 369-386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29744849

RESUMO

Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein self-assembly, which act by binding selectively to lysine and arginine residues. Through this unique mechanism of action, MTs inhibit formation of toxic oligomers and aggregates. Their efficacy and safety have been demonstrated in vitro, in cell culture, and in animal models. Here, we discuss the application of MTs in diverse in vitro and in vivo systems, the experimental details, the scope of their use, and the limitations of the approach. We also consider methods for administration of MTs in animal models to measure efficacy, pharmacokinetic, and pharmacodynamic parameters in proteinopathies.


Assuntos
Proteínas Amiloidogênicas/química , Modelos Moleculares , Multimerização Proteica , Proteínas/química , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Estrutura Molecular , Agregados Proteicos , Agregação Patológica de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...