Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 8(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448215

RESUMO

The Union-Retire CCA (UR-CCA) algorithm started a new paradigm for connected components analysis. Instead of using directed tree structures, UR-CCA focuses on connectivity. This algorithmic change leads to a reduction in required memory, with no end-of-row processing overhead. In this paper we describe a hardware architecture based on UR-CCA and its realisation on an FPGA. The memory bandwidth and pipelining challenges of hardware UR-CCA are analysed and resolved. It is shown that up to 36% of memory resources can be saved using the proposed architecture. This translates directly to a smaller device for an FPGA implementation.

2.
J Imaging ; 5(4)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34460483

RESUMO

Single-pass connected components analysis (CCA) algorithms suffer from a time overhead to resolve labels at the end of each image row. This work demonstrates how this overhead can be eliminated by replacing the conventional raster scan by a zig-zag scan. This enables chains of labels to be correctly resolved while processing the next image row. The effect is faster processing in the worst case with no end of row overheads. CCA hardware architectures using the novel algorithm proposed in this paper are, therefore, able to process images at higher throughput than other state-of-the-art methods while reducing the hardware requirements. The latency introduced by the conversion from raster scan to zig-zag scan is compensated for by a new method of detecting object completion, which enables the feature vector for completed connected components to be output at the earliest possible opportunity.

3.
Phys Rev Lett ; 120(1): 013201, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350959

RESUMO

A new pathway of strong-laser-field-induced ionization of an atom is identified which is based on recollisions under the tunneling barrier. With an amended strong-field approximation, the interference of the direct and the under-the-barrier recolliding quantum orbits are shown to induce a measurable shift of the peak of the photoelectron momentum distribution. The scaling of the momentum shift is derived relating the momentum shift to the tunneling delay time according to the Wigner concept. This allows us to extend the Wigner concept for the quasistatic tunneling time delay into the nonadiabatic domain. The obtained corrections to photoelectron momentum distributions are also relevant for state-of-the-art accuracy of strong-field photoelectron spectrograms in general.

4.
Phys Rev Lett ; 119(2): 023201, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753333

RESUMO

The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

5.
Phys Rev Lett ; 114(8): 083001, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768761

RESUMO

The intermediate domain of strong-field ionization between the tunneling and multiphoton regimes is investigated using the strong-field approximation and the imaginary-time method. An intuitive model for the dynamics is developed which describes the ionization process within a nonadiabatic tunneling picture with a coordinate dependent electron energy during the under-the-barrier motion. The nonadiabatic effects in the elliptically polarized laser field induce a transversal momentum shift of the tunneled electron wave packet at the tunnel exit and a delayed appearance in the continuum as well as a shift of the tunneling exit towards the ionic core. The latter significantly modifies the Coulomb focusing during the electron excursion in the laser field after exiting the ionization tunnel. We show that nonadiabatic effects are especially large when the Coulomb field of the ionic core is taken into account during the under-the-barrier motion. The simple man model modified with these nonadiabatic corrections provides an intuitive background for exact theories and has direct implications for the calibration of the attoclock technique.

6.
Phys Rev Lett ; 110(15): 153004, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167261

RESUMO

The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an electron momentum shift as well as a spatial shift along the laser propagation direction arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz force. The momentum shift is proportional to the Keldysh time, while the wave-packet's spatial drift is proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic tunneling dynamics.

7.
Eur Heart J ; 34(16): 1233-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22199120

RESUMO

AIMS: Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. METHODS AND RESULTS: To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to ß-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca(2+)]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca(2+)i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca(2+)i-handling, and contractility via cGKI. CONCLUSION: These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca(2+)i handling and contractility.


Assuntos
Cardiomiopatia Dilatada/enzimologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/fisiologia , Estresse Fisiológico/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Análise de Variância , Angiotensina II/farmacologia , Animais , Aorta , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/genética , Cardiotônicos/farmacologia , Constrição , Proteína Quinase Dependente de GMP Cíclico Tipo I/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Ecocardiografia , Deleção de Genes , Hemodinâmica/efeitos dos fármacos , Isoproterenol/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Tipo C/fisiologia , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Vasoconstritores/farmacologia
8.
Proc Natl Acad Sci U S A ; 108(45): 18500-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22027011

RESUMO

Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.


Assuntos
Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Miocárdio/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos
9.
Basic Res Cardiol ; 105(5): 583-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20352235

RESUMO

Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on beta-adrenergic versus Angiotensin II (Ang II)-dependent (G(s) vs. G(alphaq) mediated) modulation of Ca(2+) (i)-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca(2+) currents and Ca(2+) (i) transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca(2+) currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca(2+)/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, beta-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca(2+)-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca(2+) (i)-dependent hypertrophic growth response to Ang II, but not to beta-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT(1) signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for beta-adrenergic Ca(2+) (i)-stimulation in adult myocytes.


Assuntos
Fator Natriurético Atrial/metabolismo , Cardiomegalia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas RGS/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Isoproterenol/farmacologia , Rim/citologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Vasoconstritores/farmacologia
10.
Opt Lett ; 33(4): 411-3, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18278127

RESUMO

High-order harmonic generation from atomic systems is considered in the crossed fields of a relativistically strong infrared laser and a weak attosecond pulse train of soft x rays. Due to one-photon ionization by the x-ray pulse, the ionized electron obtains a starting momentum that compensates the relativistic drift, which is induced by the laser magnetic field, and allows the electron to efficiently emit harmonic radiation upon recombination with the atomic core in the relativistic regime. This way, short pulses of coherent hard x rays of up to 40 keV energy can be generated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...