Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34772056

RESUMO

The purpose was to show, using destructive/nondestructive methods, that the interplay between water, tablet structure, and composition determine the unique spatiotemporal hydration pattern of polymer-based matrices. The tablets containing a 1:1 w/w mixture of sodium alginate with salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA) were studied using Karl Fischer titration, differential scanning calorimetry, X-ray microtomography, and magnetic resonance imaging. As the principal results, matrix specific features were detected, e.g., "locking" of the internal part of the matrix (ALG/SA); existence of lamellar region associated with detection of free/freezing water (ALG/SA); existence of water penetrating the matrix forming specific region preceding infiltration layer (ALG/SNA); switch in the onset temperature of endothermic water peak associated with an increase in the fraction of non-freezing water weight per dry matrix weight in the infiltration layer (ALG/SNA). The existence of complicated spatiotemporal hydration patterns influenced by matrix composition and molecular properties of constituents has been demonstrated.

2.
J Biomed Mater Res B Appl Biomater ; 106(2): 843-853, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28407434

RESUMO

Pressure ulcers belong to the most chalenging clinical problems. As hydration level of such wounds is important for optimal healing, preparation of new wound dressing (WD) materials for pressure ulcers requires thorough in vitro evaluation as prerequisite to final in vivo testing. The aims of the study were to: (a) develop a simple method of preparation of asymmetric polymeric membrane, (b) to propose a set of in vitro methods for membrane characterization during hydration. A polyvinyl alcohol asymmetric membrane with homogeneous skin layer and porous spongy layer was developed with nonadhesive properties and ability to absorb and retain the water. Complementary methods, including magnetic resonance imaging, allowed quantitative assessment of spatiotemporal aspects of membrane hydration, that is, global water uptake; swelling; local hydration in terms of proton density mapping; spatial distribution of T2 relaxation time; Young's modulus; piercing resistance. The proposed method of initial wound dressing evaluation seems to be promising to compare various WD formulations, to assess the time required to prepare WD membrane to be applied to the wound and to assess how long WD retains desired working properties. The developed asymmetric membrane seems to be a good candidate for further evaluation. It was found that: Young's modulus of hydrated membrane was comparable to those of human skin; asymmetrical structure was retained during the entire hydration period; each layer had its own distinct, hydration related, properties and their spatiotemporal evolution; relatively slow changes of membrane properties during the potential WD application time-span of several hours was observed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 843-853, 2018.


Assuntos
Bandagens , Membranas Artificiais , Álcool de Polivinil/química , Úlcera por Pressão/terapia , Humanos
3.
Int J Pharm ; 499(1-2): 263-270, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26752087

RESUMO

PURPOSE OF THE RESEARCH: The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. PRINCIPAL RESULTS: Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. MAJOR CONCLUSIONS: Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Fumarato de Quetiapina/administração & dosagem , Tecnologia Farmacêutica/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética , Pressão , Fumarato de Quetiapina/química , Solubilidade , Comprimidos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...