Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Blood ; 143(18): 1845-1855, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Assuntos
Moléculas de Adesão Celular , Fator VIII , Cininogênios , Lectinas Tipo C , Receptores de Superfície Celular , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Polimorfismo de Nucleotídeo Único , Células Endoteliais da Veia Umbilical Humana/metabolismo , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Trombose/genética , Trombose/sangue , Estudos de Associação Genética , Masculino , Células Endoteliais/metabolismo , Feminino
2.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149987

RESUMO

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Assuntos
Galactose , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Imunoglobulina G/genética , Polissacarídeos/metabolismo
3.
Commun Biol ; 6(1): 1089, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884697

RESUMO

Biological age captures physiological deterioration better than chronological age and is amenable to interventions. Blood-based biomarkers have been identified as suitable candidates for biological age estimation. This study aims to improve biological age estimation using machine learning models and a feature-set of 60 circulating biomarkers available from the UK Biobank (n = 306,116). We implement an Elastic-Net derived Cox model with 25 selected biomarkers to predict mortality risk (C-Index = 0.778; 95% CI [0.767-0.788]), which outperforms the well-known blood-biomarker based PhenoAge model (C-Index = 0.750; 95% CI [0.739-0.761]), providing a C-Index lift of 0.028 representing an 11% relative increase in predictive value. Importantly, we then show that using common clinical assay panels, with few biomarkers, alongside imputation and the model derived on the full set of biomarkers, does not substantially degrade predictive accuracy from the theoretical maximum achievable for the available biomarkers. Biological age is estimated as the equivalent age within the same-sex population which corresponds to an individual's mortality risk. Values ranged between 20-years younger and 20-years older than individuals' chronological age, exposing the magnitude of ageing signals contained in blood markers. Thus, we demonstrate a practical and cost-efficient method of estimating an improved measure of Biological Age, available to the general population.


Assuntos
Envelhecimento , Humanos , Envelhecimento/fisiologia , Biomarcadores
4.
Clin Proteomics ; 20(1): 31, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550624

RESUMO

BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.

6.
Eur J Prev Cardiol ; 30(12): 1255-1262, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172216

RESUMO

AIMS: To identify a group of metabolites associated with incident cardiovascular disease (CVD) in people with type 2 diabetes and assess its predictive performance over-and-above a current CVD risk score (QRISK3). METHODS AND RESULTS: A panel of 228 serum metabolites was measured at baseline in 1066 individuals with type 2 diabetes (Edinburgh Type 2 Diabetes Study) who were then followed up for CVD over the subsequent 10 years. We applied 100 repeats of Cox least absolute shrinkage and selection operator to select metabolites with frequency >90% as components for a metabolites-based risk score (MRS). The predictive performance of the MRS was assessed in relation to a reference model that was based on QRISK3 plus prevalent CVD and statin use at baseline. Of 1021 available individuals, 255 (25.0%) developed CVD (median follow-up: 10.6 years). Twelve metabolites relating to fluid balance, ketone bodies, amino acids, fatty acids, glycolysis, and lipoproteins were selected to construct the MRS that showed positive association with 10-year cardiovascular risk following adjustment for traditional risk factors [hazard ratio (HR) 2.67; 95% confidence interval (CI) 1.96, 3.64]. The c-statistic was 0.709 (95%CI 0.679, 0.739) for the reference model alone, increasing slightly to 0.728 (95%CI 0.700, 0.757) following addition of the MRS. Compared with the reference model, the net reclassification index and integrated discrimination index for the reference model plus the MRS were 0.362 (95%CI 0.179, 0.506) and 0.041 (95%CI 0.020, 0.071), respectively. CONCLUSION: Metabolomics data might improve predictive performance of current CVD risk scores based on traditional risk factors in people with type 2 diabetes. External validation is warranted to assess the generalizability of improved CVD risk prediction using the MRS.


This study looked at whether combining a group of new markers found in the blood (called metabolites) with traditional risk factors (such as high blood pressure and obesity) could more accurately predict how likely people with type 2 diabetes are to develop cardiovascular diseases in the next 10 years. Key findingsTwelve metabolites (including amino acids and lipids) showed strong association with 10-year cardiovascular risk in people with type 2 diabetes, and a metabolites-based risk score (MRS) was created by integrating these metabolites.Combining the MRS with traditional risk factors was better at predicting the risk of a person with T2D for developing cardiovascular diseases within the next 10 years than using traditional risk factors alone.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco de Doenças Cardíacas , Metabolômica , Medição de Risco/métodos , Valor Preditivo dos Testes
7.
Nature ; 617(7962): 764-768, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198478

RESUMO

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Assuntos
COVID-19 , Estado Terminal , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Técnicas de Genotipagem , Monócitos/metabolismo , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Transcriptoma , Sequenciamento Completo do Genoma
8.
Diabetologia ; 66(6): 1071-1083, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907892

RESUMO

AIMS/HYPOTHESIS: We previously demonstrated that N-glycosylation of plasma proteins and IgGs is different in children with recent-onset type 1 diabetes compared with their healthy siblings. To search for genetic variants contributing to these changes, we undertook a genetic association study of the plasma protein and IgG N-glycome in type 1 diabetes. METHODS: A total of 1105 recent-onset type 1 diabetes patients from the Danish Registry of Childhood and Adolescent Diabetes were genotyped at 183,546 genetic markers, testing these for genetic association with variable levels of 24 IgG and 39 plasma protein N-glycan traits. In the follow-up study, significant associations were validated in 455 samples. RESULTS: This study confirmed previously known plasma protein and/or IgG N-glycosylation loci (candidate genes MGAT3, MGAT5 and ST6GAL1, encoding beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 gene, respectively) and identified novel associations that were not previously reported for the general European population. First, novel genetic associations of IgG-bound glycans were found with SNPs on chromosome 22 residing in two genomic intervals close to candidate gene MGAT3; these include core fucosylated digalactosylated disialylated IgG N-glycan with bisecting N-acetylglucosamine (GlcNAc) (pdiscovery=7.65 × 10-12, preplication=8.33 × 10-6 for the top associated SNP rs5757680) and core fucosylated digalactosylated glycan with bisecting GlcNAc (pdiscovery=2.88 × 10-10, preplication=3.03 × 10-3 for the top associated SNP rs137702). The most significant genetic associations of IgG-bound glycans were those with MGAT3. Second, two SNPs in high linkage disequilibrium (missense rs1047286 and synonymous rs2230203) located on chromosome 19 within the protein coding region of the complement C3 gene (C3) showed association with the oligomannose plasma protein N-glycan (pdiscovery=2.43 × 10-11, preplication=8.66 × 10-4 for the top associated SNP rs1047286). CONCLUSIONS/INTERPRETATION: This study identified novel genetic associations driving the distinct N-glycosylation of plasma proteins and IgGs identified previously at type 1 diabetes onset. Our results highlight the importance of further exploring the potential role of N-glycosylation and its influence on complement activation and type 1 diabetes susceptibility.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Criança , Humanos , Glicosilação , Diabetes Mellitus Tipo 1/genética , Glicômica/métodos , Seguimentos , N-Acetilglucosaminiltransferases/genética , Imunoglobulina G/metabolismo , Proteínas Sanguíneas/metabolismo , Polissacarídeos/metabolismo
9.
Commun Biol ; 6(1): 312, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959410

RESUMO

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.


Assuntos
Imunoglobulina G , Processamento de Proteína Pós-Traducional , Transferrina , Humanos , Glicosilação , Ensaios de Triagem em Larga Escala , Imunoglobulina G/sangue , Imunoglobulina G/química , Transferrina/química , Transferrina/isolamento & purificação , Polissacarídeos/análise
10.
Eur J Hum Genet ; 31(5): 588-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36927983

RESUMO

We multiply ascertained the BRCA1 pathogenic missense variant c.5207T > C; p.Val1736Ala (V1736A) in clinical investigation of breast and ovarian cancer families from Orkney in the Northern Isles of Scotland, UK. We sought to investigate the frequency and clinical relevance of this variant in those of Orcadian ancestry as an exemplar of the value of population cohorts in clinical care, especially in isolated populations. Oral history and birth, marriage and death registrations indicated genealogical linkage of the clinical cases to ancestors from the Isle of Westray, Orkney. Further clinical cases were identified through targeted testing for V1736A in women of Orcadian ancestry attending National Health Service (NHS) genetic clinics for breast and ovarian cancer family risk assessments. The variant segregates with female breast and ovarian cancer in clinically ascertained cases. Separately, exome sequence data from 2088 volunteer participants with three or more Orcadian grandparents, in the ORCADES research cohort, was interrogated to estimate the population prevalence of V1736A in Orcadians. The effects of the variant were assessed using Electronic Health Record (EHR) linkage. Twenty out of 2088 ORCADES research volunteers (~1%) carry V1736A, with a common haplotype around the variant. This allele frequency is ~480-fold higher than in UK Biobank participants. Cost-effectiveness of population screening for BRCA1 founder pathogenic variants has been demonstrated at a carrier frequency below the ~1% observed here. Thus we suggest that Orcadian women should be offered testing for the BRCA1 V1736A founder pathogenic variant, starting with those with known Westray ancestry.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Medicina Estatal , Proteína BRCA1/genética , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Frequência do Gene , Haplótipos , Escócia/epidemiologia , Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína BRCA2/genética , Testes Genéticos
11.
Nat Commun ; 14(1): 307, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658113

RESUMO

Obesity remains an unmet global health burden. Detrimental anatomical distribution of body fat is a major driver of obesity-mediated mortality risk and is demonstrably heritable. However, our understanding of the full genetic contribution to human adiposity is incomplete, as few studies measure adiposity directly. To address this, we impute whole-body imaging adiposity phenotypes in UK Biobank from the 4,366 directly measured participants onto the rest of the cohort, greatly increasing our discovery power. Using these imputed phenotypes in 392,535 participants yielded hundreds of genome-wide significant associations, six of which replicate in independent cohorts. The leading causal gene candidate, ADAMTS14, is further investigated in a mouse knockout model. Concordant with the human association data, the Adamts14-/- mice exhibit reduced adiposity and weight-gain under obesogenic conditions, alongside an improved metabolic rate and health. Thus, we show that phenotypic imputation at scale offers deeper biological insights into the genetics of human adiposity that could lead to therapeutic targets.


Assuntos
Proteínas ADAMTS , Adiposidade , Obesidade , Animais , Humanos , Camundongos , Proteínas ADAMTS/genética , Adiposidade/genética , Índice de Massa Corporal , Genoma , Obesidade/genética , Fenótipo , Aumento de Peso/genética , Camundongos Knockout
12.
Hum Mol Genet ; 32(8): 1266-1275, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36349687

RESUMO

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships and demonstrate the importance of isolated populations in pQTL analysis.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Fenótipo , Sequenciamento Completo do Genoma , Proteínas Sanguíneas/genética , Estudo de Associação Genômica Ampla
13.
Mol Metab ; 61: 101509, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504531

RESUMO

OBJECTIVE: Deep sequencing offers unparalleled access to rare variants in human populations. Understanding their role in disease is a priority, yet prohibitive sequencing costs mean that many cohorts lack the sample size to discover these effects on their own. Meta-analysis of individual variant scores allows the combination of rare variants across cohorts and study of their aggregated effect at the gene level, boosting discovery power. However, the methods involved have largely not been field-tested. In this study, we aim to perform the first meta-analysis of gene-based rare variant aggregation optimal tests, applied to the human cardiometabolic proteome. METHODS: Here, we carry out this analysis across MANOLIS, Pomak and ORCADES, three isolated European cohorts with whole-genome sequencing (total N = 4,422). We examine the genetic architecture of 250 proteomic traits of cardiometabolic relevance. We use a containerised pipeline to harmonise variant lists across cohorts and define four sets of qualifying variants. For every gene, we interrogate protein-damaging variants, exonic variants, exonic and regulatory variants, and regulatory only variants, using the CADD and Eigen scores to weigh variants according to their predicted functional consequence. We perform single-cohort rare variant analysis and meta-analyse variant scores using the SMMAT package. RESULTS: We describe 5 rare variant pQTLs (RV-pQTL) which pass our stringent significance threshold (7.45 × 10-11) and quality control procedure. These were split between four cis signals for MARCO, TEK, MMP2 and MPO, and one trans association for GDF2 in the SERPINA11 gene. We show that the cis-MPO association, which was not detectable using the single-point data alone, is driven by 5 missense and frameshift variants. These include rs140636390 and rs119468010, which are specific to MANOLIS and ORCADES, respectively. We show how this kind of signal could improve the predictive accuracy of genetic factors in common complex disease such as stroke and cardiovascular disease. CONCLUSIONS: Our proof-of-concept study demonstrates the power of gene-based meta-analyses for discovering disease-relevant associations complementing common-variant signals by incorporating population-specific rare variation.


Assuntos
Doenças Cardiovasculares , Proteômica , Doenças Cardiovasculares/genética , Estudos de Coortes , Humanos , Fenótipo , Sequenciamento Completo do Genoma
14.
Nat Genet ; 54(5): 581-592, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534559

RESUMO

Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Análise da Randomização Mendeliana , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
15.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35387486

RESUMO

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Receptores de Coronavírus , SARS-CoV-2
16.
Cardiovasc Diabetol ; 21(1): 62, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477395

RESUMO

BACKGROUND: Atherosclerotic cardiovascular diseases (CVD) is the leading cause of death in diabetes, but the full range of biomarkers reflecting atherosclerotic burden and CVD risk in people with diabetes is unknown. Metabolomics may help identify novel biomarkers potentially involved in development of atherosclerosis. We investigated the serum metabolomic profile of subclinical atherosclerosis, measured using ankle brachial index (ABI), in people with type 2 diabetes, compared with the profile for symptomatic CVD in the same population. METHODS: The Edinburgh Type 2 Diabetes Study is a cohort of 1,066 individuals with type 2 diabetes. ABI was measured at baseline, years 4 and 10, with cardiovascular events assessed at baseline and during 10 years of follow-up. A panel of 228 metabolites was measured at baseline using nuclear magnetic resonance spectrometry, and their association with both ABI and prevalent CVD was explored using univariate regression models and least absolute shrinkage and selection operator (LASSO). Metabolites associated with baseline ABI were further explored for association with follow-up ABI and incident CVD. RESULTS: Mean (standard deviation, SD) ABI at baseline was 0.97 (0.18, N = 1025), and prevalence of CVD was 35.0%. During 10-year follow-up, mean (SD) change in ABI was + 0.006 (0.178, n = 436), and 257 CVD events occurred. Lactate, glycerol, creatinine and glycoprotein acetyls levels were associated with baseline ABI in both univariate regression [ßs (95% confidence interval, CI) ranged from - 0.025 (- 0.036, - 0.015) to - 0.023 (- 0.034, - 0.013), all p < 0.0002] and LASSO analysis. The associations remained nominally significant after adjustment for major vascular risk factors. In prospective analyses, lactate was nominally associated with ABI measured at years 4 and 10 after adjustment for baseline ABI. The four ABI-associated metabolites were all positively associated with prevalent CVD [odds ratios (ORs) ranged from 1.29 (1.13, 1.47) to 1.49 (1.29, 1.74), all p < 0.0002], and they were also positively associated with incident CVD [ORs (95% CI) ranged from 1.19 (1.02, 1.39) to 1.35 (1.17, 1.56), all p < 0.05]. CONCLUSIONS: Serum metabolites relating to glycolysis, fluid balance and inflammation were independently associated with both a marker of subclinical atherosclerosis and with symptomatic CVD in people with type 2 diabetes. Additional investigation is warranted to determine their roles as possible etiological and/or predictive biomarkers for atherosclerotic CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Biomarcadores , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Lactatos , Metabolômica , Fenótipo , Estudos Prospectivos
17.
Nat Commun ; 13(1): 1586, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332118

RESUMO

Post-translational modifications diversify protein functions and dynamically coordinate their signalling networks, influencing most aspects of cell physiology. Nevertheless, their genetic regulation or influence on complex traits is not fully understood. Here, we compare the genetic regulation of the same PTM of two proteins - glycosylation of transferrin and immunoglobulin G (IgG). By performing genome-wide association analysis of transferrin glycosylation, we identify 10 significantly associated loci, 9 of which were not reported previously. Comparing these with IgG glycosylation-associated genes, we note protein-specific associations with genes encoding glycosylation enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1), as well as shared associations (FUT6, FUT8). Colocalisation analyses of the latter suggest that different causal variants in the FUT genes regulate fucosylation of the two proteins. Glycosylation of these proteins is thus genetically regulated by both shared and protein-specific mechanisms.


Assuntos
Estudo de Associação Genômica Ampla , Transferrina , Glicosilação , Imunoglobulina G/metabolismo , Processamento de Proteína Pós-Traducional , Transferrina/genética , Transferrina/metabolismo
18.
Nature ; 607(7917): 97-103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255492

RESUMO

Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.


Assuntos
COVID-19 , Estado Terminal , Genoma Humano , Interações Hospedeiro-Patógeno , Sequenciamento Completo do Genoma , Transportadores de Cassetes de Ligação de ATP , COVID-19/genética , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Moléculas de Adesão Celular , Cuidados Críticos , Estado Terminal/mortalidade , Selectina E , Fator VIII , Fucosiltransferases , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Humanos , Subunidade beta de Receptor de Interleucina-10 , Lectinas Tipo C , Mucina-1 , Proteínas do Tecido Nervoso , Proteínas de Transferência de Fosfolipídeos , Receptores de Superfície Celular , Proteínas Repressoras , SARS-CoV-2/patogenicidade , Galactosídeo 2-alfa-L-Fucosiltransferase
19.
Aging (Albany NY) ; 14(2): 623-659, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073279

RESUMO

Biological age (BA), a measure of functional capacity and prognostic of health outcomes that discriminates between individuals of the same chronological age (chronAge), has been estimated using a variety of biomarkers. Previous comparative studies have mainly used epigenetic models (clocks), we use ~1000 participants to compare fifteen omics ageing clocks, with correlations of 0.21-0.97 with chronAge, even with substantial sub-setting of biomarkers. These clocks track common aspects of ageing with 95% of the variance in chronAge being shared among clocks. The difference between BA and chronAge - omics clock age acceleration (OCAA) - often associates with health measures. One year's OCAA typically has the same effect on risk factors/10-year disease incidence as 0.09/0.25 years of chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while others capture specific risks. We conclude BA is measurable and prognostic and that future work should prioritise health outcomes over chronAge.


Assuntos
Envelhecimento , Epigênese Genética , Envelhecimento/genética , Relógios Biológicos , Biomarcadores , Metilação de DNA , Epigenômica , Humanos
20.
Hum Mol Genet ; 31(10): 1545-1559, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34791244

RESUMO

Changes in the N-glycosylation of immunoglobulin G (IgG) are often observed in pathological states, such as autoimmune, inflammatory, neurodegenerative, cardiovascular diseases and some types of cancer. However, in most cases, it is not clear if the disease onset causes these changes, or if the changes in IgG N-glycosylation are among the risk factors for the diseases. The aim of this study was to investigate the casual relationships between IgG N-glycosylation traits and 12 diseases, in which the alterations of IgG N-glycome were previously reported, using two sample Mendelian randomization (MR) approach. We have performed two sample MR using publicly available summary statistics of genome-wide association studies of IgG N-glycosylation and disease risks. Our results indicate positive causal effect of systemic lupus erythematosus (SLE) on the abundance of N-glycans with bisecting N-acetylglucosamine in the total IgG N-glycome. Therefore, we suggest regarding this IgG glycosylation trait as a biomarker of SLE. We also emphasize the need for more powerful GWAS studies of IgG N-glycosylation to further elucidate the causal effect of IgG N-glycome on the diseases.


Assuntos
Imunoglobulina G , Lúpus Eritematoso Sistêmico , Estudo de Associação Genômica Ampla , Glicosilação , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/genética , Polissacarídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...