Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(49): eadg2615, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055821

RESUMO

Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.


Assuntos
Encéfalo , Adulto , Humanos , Ratos , Animais , Glicosilação , Espectrometria de Massas
2.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711977

RESUMO

Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. Here, we performed multi-regional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry, then integrated these data with complementary glycotranscriptomic data. We found that in primates the brain N-glycome has evolved more rapidly than the underlying transcriptomic framework, providing a mechanism for generating additional diversity. We show that brain N-glycome evolution in hominids has been characterized by an increase in complexity and α(2-6)-linked N-acetylneuraminic acid along with human-specific cell-type expression of key glycogenes. Finally, by comparing the prenatal and adult human brain N-glycome, we identify region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain. One-Sentence Summary: Evolution of the human brain N-glycome has been marked by an increase in complexity and a shift in sialic acid linkage.

3.
Glycoconj J ; 39(3): 443-471, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334027

RESUMO

The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.


Assuntos
Glicômica , Polissacarídeos , Encéfalo/metabolismo , Glicosilação , Polissacarídeos/química
4.
Glycobiology ; 31(5): 636-648, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242084

RESUMO

Asparagine-linked glycosylation (N-glycosylation) plays a key role in many neurodevelopmental processes, including neural cell adhesion, neurite outgrowth and axon targeting. However, little is known about the dynamics of N-glycosylation during brain development and, in particular, how the N-glycome of the developing neocortex differs from that of the adult. The aim of this study, therefore, was to perform a thorough characterization of N-glycosylation in both the adult and neonatal rat neocortex in order to gain insights into the types of changes occurring in the N-glycome during neurodevelopment. To this end, we used hydrophilic interaction ultraperformance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry to compare the adult neocortical N-glycome with that of 24- and 48-h neonates. We report that the abundance of complex N-glycans is significantly lower in adults compared with neonates. Furthermore, the proportion of charged complex N-glycans is also greatly reduced. This decrease in the abundance of complex N-glycans is offset by a corresponding increase in the proportion of truncated and, to a lesser extent, hybrid N-glycans. Lastly, we report that although the proportion of oligomannose N-glycans remains constant at around 24%, the distribution of high-mannose subtypes shifts from predominantly large subtypes in neonates to smaller subtypes in the adult. In summary, our findings indicate that N-glycan synthesis in the rat neocortex is fundamentally different in neonates compared with adults with a general shift occurring from large, sialylated N-glycans towards smaller, neutral structures as neonates develop into adults, coupled with a parallel shift towards smaller oligomannose structures.


Assuntos
Neocórtex/metabolismo , Polissacarídeos/metabolismo , Animais , Desenvolvimento Embrionário , Feminino , Glicosilação , Masculino , Neocórtex/química , Polissacarídeos/química , Ratos , Ratos Wistar
5.
Mol Neurobiol ; 54(5): 3528-3541, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189618

RESUMO

Neuronal PAS domain protein 4 (Npas4) is a brain-specific transcription factor whose expression is enriched in neurogenic regions of the brain. In addition, it was demonstrated that Npas4 expression is dynamic and highly regulated during neural differentiation of embryonic stem cells (ESCs). While these findings implicate a role for Npas4 in neurogenesis, the underlying mechanisms of regulation remain unknown. Given that growing evidence suggests that microRNAs (miRNAs) play important roles in both embryonic and adult neurogenesis, we reasoned that miRNAs are good candidates for regulating Npas4 expression during neural differentiation of ESCs. In this study, we utilized the small RNA sequencing method to profile miRNA expression during neural differentiation of mouse ESCs. Two differentially expressed miRNAs were identified to be able to significantly reduce reporter gene activity by targeting the Npas4 3'UTR, namely miR-744 and miR-224. More importantly, ectopic expression of these miRNAs during neural differentiation resulted in downregulation of endogenous Npas4 expression. Subsequent functional analysis revealed that overexpression of either miR-744 or miR-224 delayed early neural differentiation, reduced GABAergic neuron production and inhibited neurite outgrowth. Collectively, our findings indicate that Npas4 not only functions at the early stages of neural differentiation but may also, in part, contribute to neuronal subtype specification and neurite development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação para Baixo , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Neuritos/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Genes Reporter , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Reprodutibilidade dos Testes
6.
J Cereb Blood Flow Metab ; 36(8): 1449-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26661154

RESUMO

Stroke is the second leading cause of death and the most frequent cause of adult disability. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischaemia. Although previous studies have demonstrated that Npas4 plays a critical role in protecting neurons against neurodegenerative insults, the neuroprotective effect of Npas4 in response to ischaemic brain injury remains unknown. In this study, we used a loss-of-function approach to examine the neuroprotective potential of Npas4 in the context of ischaemic damage. Using oxygen and glucose deprivation, we demonstrated that the knockdown of Npas4 in mouse cortical neurons resulted in increased susceptibility to cell death. The protective effect of Npas4 was further investigated in vivo using a photochemically-induced stroke model in mice. We found a significantly larger lesion size and increased neurodegeneration in Npas4 knockout mice as compared to wild-type mice. Moreover, we also showed that ablation of Npas4 caused an increase in activated astrocytes and microglia, pro-inflammatory cytokines interleukin-6 and tumour necrosis factor alpha levels and a switch from apoptotic to necrotic cell death. Taken together, these data suggest that Npas4 plays a neuroprotective role in ischaemic stroke by limiting progressive neurodegeneration and neuroinflammation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Encéfalo/imunologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Técnicas de Inativação de Genes , Glucose/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/imunologia , Oxigênio/metabolismo , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real
7.
Int J Mol Sci ; 16(12): 29011-28, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690124

RESUMO

Stroke is one of the leading causes of death and adult disability in the world. Although many molecules have been documented to have a neuroprotective effect, the majority of these molecules failed to improve the neurological outcomes for patients with brain ischemia. It has been proposed that neuroprotection alone may, in fact, not be adequate for improving the prognosis of ischemic stroke. Neuroprotectants that can regulate other processes which occur in the brain during ischemia could potentially be targets for the development of effective therapeutic interventions in stroke. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischemia. It has been shown that Npas4 plays an important role in protecting neurons against many types of neurodegenerative insult. Recently, it was demonstrated that Npas4 indeed has a neuroprotective role in ischemic stroke and that Npas4 might be involved in modulating the cell death pathway and inflammatory response. In this review, we summarize the current knowledge of the roles that Npas4 may play in neuroinflammation and ischemia. Understanding how ischemic lesion size in stroke may be reduced through modulation of Npas4-dependent apoptotic and inflammatory pathways could lead to the development of new stroke therapies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encéfalo/patologia , Neurônios/patologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/citologia , Encéfalo/metabolismo , Isquemia Encefálica/genética , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Neurônios/citologia , Neurônios/metabolismo
8.
Behav Brain Res ; 281: 276-82, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25549857

RESUMO

The transcription factor neuronal PAS domain-containing protein 4 (Npas4), which regulates the formation of inhibitory synapses on excitatory neurons, has been suggested as a candidate gene for neurological and psychiatric conditions such as bipolar depression, autism spectrum and cognitive disorders. A mouse model of Npas4 deficiency has been developed to investigate any role in these disorders. Behavioural characterisation of Npas4(-/-), Npas4(+/-) and Npas4(+/+) mice has been conducted using the open field, elevated zero maze (EZM), Y-maze, sociability test and forced swim test (FST) to investigate a range of behaviours. Npas4(-/-) mice spent more time in the open arm of the EZM than other genotypes, suggesting decreased anxiety-like behaviour. Npas4(+/-) mice, however, were more immobile in the FST than other genotypes, suggesting increased depression-like behaviour, and also showed impaired spatial recognition memory in the Y-maze. There were no differences between genotype in social behaviour. These results suggest that differential levels of Npas4 expression in the brain may regulate anxiety, depression and cognition related disorders.


Assuntos
Ansiedade/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cognição/fisiologia , Depressão/genética , Comportamento Social , Animais , Ansiedade/psicologia , Comportamento Animal/fisiologia , Depressão/psicologia , Heterozigoto , Homozigoto , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Reconhecimento Psicológico , Memória Espacial/fisiologia , Natação/psicologia
9.
Biomed Opt Express ; 5(11): 3975-80, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25426323

RESUMO

We report here on the development of a method for inducing a stroke in a specific location within a mouse brain through the use of an optical fiber. By capturing the emitted fluorescence signal generated using the same fiber it is possible to monitor photochemical changes within the brain in real-time, and directly measure the concentration of the stroke-inducing dye, Rose Bengal, at the infarct site. This technique reduces the requirement for post-operative histology to determine if a stroke has successfully been induced within the animal, and therefore opens up the opportunity to explore the recovery of the brain after the stroke event.

10.
Stem Cell Res Ther ; 5(3): 64, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24887558

RESUMO

INTRODUCTION: Npas4 is a calcium-dependent transcription factor expressed within neurons of the brain where it regulates the expression of several genes that are important for neuronal survival and synaptic plasticity. It is known that in the adult brain Npas4 plays an important role in several key aspects of neurobiology including inhibitory synapse formation, neuroprotection and memory, yet very little is known about the role of Npas4 during neurodevelopment. The aim of this study was to examine the expression and function of Npas4 during nervous system development by using a combination of in vivo experiments in the developing mouse embryo and neural differentiation of embryonic stem cells (ESCs) as an in vitro model of the early stages of embryogenesis. METHODS: Two different neural differentiation paradigms were used to investigate Npas4 expression during neurodevelopment in vitro; adherent monolayer differentiation of mouse ESCs in N2B27 medium and Noggin-induced differentiation of human ESCs. This work was complemented by direct analysis of Npas4 expression in the mouse embryo. The function of Npas4 in the context of neurodevelopment was investigated using loss-of-function experiments in vitro. We created several mouse ESC lines in which Npas4 expression was reduced during neural differentiation through RNA interference and we then analyzed the ability of these Npas4 knockdown mouse ESCs lines to undergo neural differentiation. RESULTS: We found that while Npas4 is not expressed in undifferentiated ESCs, it becomes transiently up-regulated during neural differentiation of both mouse and human ESCs at a stage of differentiation that is characterized by proliferation of neural progenitor cells. This was corroborated by analysis of Npas4 expression in the mouse embryo where the Npas4 transcript was detected specifically in the developing forebrain beginning at embryonic day 9.5. Finally, knockdown of Npas4 expression in mouse ESCs undergoing neural differentiation affected their ability to differentiate appropriately, resulting in delayed neural differentiation. CONCLUSIONS: Here we provide the first evidence that Npas4 is expressed during embryonic development and that it may have a developmental role that is unrelated to its function in the adult brain.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Neurogênese/fisiologia , Animais , Linhagem Celular , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Reação em Cadeia da Polimerase
11.
Eur J Neurosci ; 37(11): 1875-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23431968

RESUMO

The neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an important transcriptional regulator of synaptic plasticity and cognition. The present study characterises the in vivo neuroanatomical expression pattern of the Npas4 protein in a rat model of focal cerebral ischemia. Animals were subjected to unilateral middle cerebral artery occlusion for 2 h, after which the spatiotemporal and neuronal profiles of Npas4 protein expression were analysed by immunohistochemistry at different time points post-reperfusion. Focal cerebral ischemia induced an early, transient and robust upregulation of Npas4 in a brain region-dependent manner involving predominantly principal neurons. Interestingly, we observed a unique differential induction of Npas4 protein expression in corticolimbic regions of the rat brain that are critically linked to cognition and emotion. These findings suggest that stroke-induced Npas4 upregulation may be involved in a transcriptional regulatory program within the corticolimbic circuitry following an ischemic insult.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Sistema Límbico/metabolismo , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Córtex Cerebral/patologia , Sistema Límbico/patologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...