Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Oncol ; 60(12): 1621-1628, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606390

RESUMO

BACKGROUND: Metastatic colorectal cancer (mCRC) is a complex and heterogeneous disease with few standard and targeted treatment options. Next-generation sequencing of tumor tissue was performed to identify cancer driver mutations to discover possible personalized treatment options, as targeted treatment possibilities are limited for this patient population. Results of genomic sequencing in patients with treatment-refractory mCRC are described in this retrospective analysis. MATERIAL AND METHODS: Clinico-pathological characteristics and genomic sequence results of consecutive patients with refractory mCRC, referred to the Experimental Cancer Therapy Unit (ECTU) at Department of Oncology, Herlev & Gentofte Hospital in the period from 1 October 2015 to 14 December 2018 were reviewed in this retrospective analysis. Tumor tissue from the patients was analyzed by next-generation sequencing using the Oncomine Comprehensive primer panel to detect actionable variants of cancer driver mutations and microsatellite instability status. From August 2018 tumor mutational burden was also analyzed. RESULTS: A total of 80 patients with treatment-refractory mCRC and in a fairly good performance were referred to the ECTU during this period. Genomic sequencing of tumor tissue was performed for all 80 patients and a cancer driver mutation was identified in 90% (n = 72) of the patients. A total of 31.3% (n = 25) of the patients received therapy either as targetable therapy outside an available trial (n = 2), FDA approved therapy (n = 2), or treatment in phase 1 or 2 trials, independent of the genomic signature 26.3% (n = 21). CONCLUSION: Most mCRC patients refractory to standard anti-neoplastic therapies, presented with a cancer driver mutation, however, only a few of these mutations gave rise to matched therapies as only 2.5% of the patients from this period received targeted therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Biomarcadores Tumorais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Estudos Retrospectivos
2.
Diabetes ; 50(7): 1588-97, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11423480

RESUMO

Glucose-dependent insulinotropic peptide (GIP) is known to be degraded by dipeptidyl peptidase IV (DPP IV), forming an inactive metabolite, but the extent of the enzyme's role in regulating the biological activity of GIP in vivo is still largely unknown. In nonfasted anesthetized pigs given an intravenous infusion of GIP, the intact peptide (determined by a novel NH(2)-terminally directed radioimmunoassay) accounts for only 14.5 +/- 2.5% of total immunoreactivity. This is increased (to 40.9 +/- 0.9%, P < 0.0001) by coadministration of valine-pyrrolidide (a specific DPP IV inhibitor) at a dose that completely inhibits plasma DPP IV activity. The plasma t(1/2) of intact GIP is prolonged by the inhibitor (from 3.3 +/- 0.3 to 8.1 +/- 0.6 min; P < 0.001), whereas the t(1/2) for COOH-terminal immunoreactivity is unaffected (13.2 +/- 0.5 and 11.5 +/- 0.8 min, pre- and postinhibitor). Measurement of arteriovenous concentration differences revealed that the liver, kidney, and extremities are the main sites of removal of exogenous intact GIP (organ extractions, 28.0 +/- 2.2, 26.3 +/- 5.7, and 21.8 +/- 3.0%, respectively). These organ extractions are reduced (P < 0.02) but not eliminated (kidney and extremities) by valine-pyrrolidide (to 6.5 +/- 4.6, 14.1 +/- 3.1, and 13.9 +/- 2.4%, respectively). Valine-pyrrolidide potentiates the insulinotropic effect of GIP (P < 0.02), resulting in an enhanced glucose disappearance rate (k, from 8.0 +/- 0.5 to 15.5 +/- 2.2%/min; P < 0.01) and a reduction in the glucose excursion after an intravenous glucose load (area under the curve, from 133 +/- 23 to 75 +/- 9 min. mmol/l; P < 0.05). These results suggest that DPP IV plays an important role in GIP metabolism but is not the sole enzyme responsible for its NH(2)-terminal degradation. Nevertheless, DPP IV inhibition increases the proportion of intact peptide sufficiently to enhance its insulinotropic and antihyperglycemic effects.


Assuntos
Glicemia/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores Enzimáticos/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Insulina/sangue , Anestesia , Animais , Cromatografia Líquida de Alta Pressão , Ketamina , Midazolam , Pirróis/farmacologia , Radioimunoensaio , Suínos , Valina/farmacologia
3.
Am J Physiol ; 271(3 Pt 1): E458-64, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8843738

RESUMO

Glucagon-like peptide 1 (GLP-1) metabolism was studied in halothane-anesthetized pigs (n = 7) using processing-independent (PI) and COOH-terminal (C) radioimmunoassays (RIA) and an enzyme-linked immunosorbent assay (ELISA) specific for biologically active GLP-1. Renal extraction of endogenous GLP-1 was detected by PI-RIA (33.1 +/- 13.3%) and C-RIA (16.0 +/- 6.3%) and by all assays during GLP-1 infusion (ELISA, 69.4 +/- 6.3%; PI-RIA, 32.6 +/- 7.3%; C-RIA, 43.7 +/- 3.4%), indicating substantial fragmentation. Hepatic and pulmonary degradation were undetectable under basal conditions, but exogenous GLP-1 elimination by the liver (43.6 +/- 8.9%) and lungs (10.1 +/- 3.2%) was measured by ELISA, suggesting primarily NH2-terminal degradation. Endogenous GLP-1 extraction by the hindleg was only detected by C-RIA (16.0 +/- 6.3%). During GLP-1 infusion, greater hindleg extraction was measured by ELISA (38.5 +/- 6.8%) and C-RIA (33.0 +/- 6.4%) than by PI-RIA (11.4 +/- 3.2%), indicating limited degradation at each terminus or more substantial COOH-terminal degradation. A shorter (P < 0.01) plasma half-life was revealed by ELISA (1.5 +/- 0.4 min) than by PI-RIA (4.5 +/- 0.6 min) or C-RIA (4.1 +/- 0.5 min). Metabolic clearance rates measured by PI-RIA (20.0 +/- 3.8 ml.min-1.kg-1) and C-RIA (15.5 +/- 1.6 ml.min-1.kg-1) were shorter (P < 0.01) than that measured by ELISA (106.8 +/- 14.7 ml.min-1.kg-1). Tissue-specific differential metabolism of GLP-1 occurs, and NH2-terminal degradation, rendering GLP-1 inactive, is particularly important in its clearance.


Assuntos
Peptídeos/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon , Especificidade de Órgãos , Radioimunoensaio , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...