Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24583, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312682

RESUMO

Crocodiles have a particularly powerful innate immune system because their blood contains high levels of antimicrobial peptides. They can survive injuries that would be fatal to other animals, and they are rarely afflicted with diseases. To better understand the crocodile's innate immune response, proteomic analysis was performed on the white blood cells (WBC) of an Aeromonas hydrophila-infected crocodile. Levels of WBC and red blood cells (RBC) rapidly increased within 1 h. In WBC, there were 109 up-regulated differentially expressed proteins (DEP) that were up-regulated. Fifty-nine DEPs dramatically increased expression from 1 h after inoculation, whereas 50 up-regulated DEPs rose after 24 h. The most abundant DEPs mainly had two biological functions, 1) gene expression regulators, for example, zinc finger proteins and histone H1 family, and 2) cell mechanical forces such as actin cytoskeleton proteins and microtubule-binding proteins. This finding illustrates the characteristic effective innate immune response mechanism of crocodiles that might occur via boosted transcription machinery proteins to accelerate cytoskeletal protein production for induction of phagocytosis, along with the increment of trafficking proteins to transport essential molecules for combating pathogens. The findings of this study provide new insights into the mechanisms of the crocodile's innate immune system.

2.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834262

RESUMO

Solenopsis geminata is recognized for containing the allergenic proteins Sol g 1, 2, 3, and 4 in its venom. Remarkably, Sol g 2.1 exhibits hydrophobic binding and has a high sequence identity (83.05%) with Sol i 2 from S. invicta. Notably, Sol g 2.1 acts as a mediator, causing paralysis in crickets. Given its structural resemblance and biological function, Sol g 2.1 may play a key role in transporting hydrophobic potent compounds, which induce paralysis by releasing the compounds through the insect's nervous system. To investigate this further, we constructed and characterized the recombinant Sol g 2.1 protein (rSol g 2.1), identified with LC-MS/MS. Circular dichroism spectroscopy was performed to reveal the structural features of the rSol g 2.1 protein. Furthermore, after treating crickets with S. geminata venom, immunofluorescence and immunoblotting results revealed that the Sol g 2.1 protein primarily localizes to the neuronal cell membrane of the brain and thoracic ganglia, with distribution areas related to octopaminergic neuron cell patterns. Based on protein-protein interaction predictions, we found that the Sol g 2.1 protein can interact with octopamine receptors (OctRs) in neuronal cell membranes, potentially mediating Sol g 2.1's localization within cricket central nervous systems. Here, we suggest that Sol g 2.1 may enhance paralysis in crickets by acting as carriers of active molecules and releasing them onto target cells through pH gradients. Future research should explore the binding properties of Sol g 2.1 with ligands, considering its potential as a transporter for active molecules targeting pest nervous systems, offering innovative pest control prospects.


Assuntos
Venenos de Formiga , Formigas , Críquete , Animais , Venenos de Formiga/química , Venenos de Formiga/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Formigas/química , Peçonhas , Proteínas de Ligação ao GTP/metabolismo , Proteínas Recombinantes/metabolismo , Sistema Nervoso Central/metabolismo , Paralisia
3.
Curr Res Food Sci ; 7: 100598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790858

RESUMO

There has been a resurgence of interest in bioactive peptides as therapeutic agents. This is particularly interesting for tyrosinase, which can be inhibited by thiol-containing peptides. This work demonstrates that an N-terminal cysteine-containing tetrapeptide can be rationally designed to inhibit tyrosinase activity in vitro and in cells. The tetrapeptide cysteine (C), arginine (R), asparagine (N) and leucine (L) or CRNL is a potent inhibitor of tyrosinase activity with an IC50 value of 39.62 ± 6.21 µM, which is comparable to currently used tyrosinase inhibitors. Through structure-activity studies and computational modeling, we demonstrate the peptide interacts with the enzyme via electrostatic (R with E322), hydrogen bonding (N with N260) and hydrophobic (L with V248) intermolecular interactions and that a combination of these is required for potent activity. Moreover, copper chelating activity might be one of the mechanisms of tyrosinase inhibition by CRNL. Kinetic studies show that tetrapeptide is a competitive inhibitor with two-step irreversible inhibition. In addition, CRNL had no toxicity and could reduce melanin levels in the murine melanoma cell line (B16F1). Overall, CRNL is a very promising candidate for hyperpigmentation treatment.

4.
Sci Rep ; 13(1): 16096, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752188

RESUMO

Antimicrobial resistance is a growing health concern. Antimicrobial peptides are a potential solution because they bypass conventional drug resistance mechanisms. Previously, we isolated a peptide from Crocodylus siamensis hemoglobin hydrolysate, which has antimicrobial activity and identified the main peptide from this mixture (QL17). The objective of this work was to evaluate and rationally modify QL17 in order to: (1) control its mechanism of action through bacterial membrane disruption; (2) improve its antimicrobial activity; and (3) ensure it has low cytotoxicity against normal eukaryotic cells. QL17 was rationally designed using physicochemical and template-based methods. These new peptide variants were assessed for: (1) their in vitro inhibition of microbial growth, (2) their cytotoxicity against normal cells, (3) their selectivity for microbes, and (4) the mode of action against bacteria using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal microscopy. The results indicate that all designed peptides have more potent antimicrobial efficacy than QL17 and IL15 peptides. However, only the most rationally modified peptides showed strong antimicrobial activity and minimal toxicity against normal cells. In particular, IL15.3 (hydrophobicity of 47% and net charge of + 6) was a potent antimicrobial agent (MIC = 4-12 µg/mL; MBC = 6-25 µg/mL) and displayed excellent selectivity for microbes (cf. human cells) via FACS assays. Microscopy confirmed that IL15.3 acts against bacteria by disrupting the cell membrane integrity and penetrating into the membrane. This causes the release of intracellular content into the outer environment leading to the death of bacteria. Moreover, IL15.3 can also interact with DNA suggesting it could have dual mode of action. Overall, a novel variant of QL17 is described that increases antimicrobial activity by over 1000-fold (~ 5 µg/mL MIC) and has minimal cytotoxicity. It may have applications in clinical use to treat and safeguard against bacteria.


Assuntos
Jacarés e Crocodilos , Peptídeos Antimicrobianos , Humanos , Animais , Interleucina-15 , Peptídeos/farmacologia , Hemoglobinas/farmacologia
5.
Biochem Biophys Rep ; 35: 101534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37671389

RESUMO

The glutinous nest that builds by the saliva secretion of swiftlet is recognizable as an edible bird's nest (EBN). It enriched a medicinal value and was regarded as supplementary food that exerts various beneficial health effects, especially immune boosters. This study's objective was to determine the impact of EBN on the expression of MHC-II and costimulatory molecules (CD86 and CD80) related to the initiation of T-cell activation. Both rEBN and pEBN samples were prepared with simulated gastrointestinal digestion for enhancing the bioaccessibility of bioactive compounds. Our result showed that digested EBN samples slightly influence the upregulation of MHC-II, CD86, and CD80 in gene expression of LPS-stimulated Raw 264.7 cells. The concern of endotoxin contamination in EBN samples, which may cause a false-positive result, was measured by quantitative PCR. We found that the inflammatory genes (IL-1ß and TNF-α) were not induced by EBN treatments. Moreover, cell surface protein expression in splenocytes treated with EBN was assessed using flow cytometric analysis. Digested EBN samples demonstrated their capacity to promote the elevation of MHC-II, CD86, and CD80 cell surface protein expression. Finally, the digested-EBN-treated splenocytes only exhibited a specific response in the T-cells population. Thus, EBN is a source of the bioactive compound that has been proposed to exert a role in the stimulation of both MHC-II and costimulatory molecules for TCR/pMHC-II interaction leading to T-cell activation.

6.
Appl Biochem Biotechnol ; 195(2): 1096-1108, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36327032

RESUMO

Antimicrobial peptides are becoming a new generation of antibiotics due to their therapeutic potential and ability to decrease drug-resistant bacteria development. Cathelicidins are known as effective peptides of vertebrate immunity that play crucial roles in the defensive strategy against pathogens. To improve its potency, the RN15 antibacterial peptide derived from the cathelin domain of Crocodylus siamensis cathelicidin has been modified and its antimicrobial properties investigated. Peptides were derived by template-based and physicochemical designation. The RN15 derivative peptides were predicted through their structure modeling, antimicrobial potency, and peptide-membrane calculation. The antimicrobial and cytotoxic activities of candidate peptides were investigated. Simultaneous consideration of physicochemical characteristics, secondary structure modeling, and the result of antimicrobial peptide tools prediction indicated that RN15m4 peptide was a candidate derivative antimicrobial peptide. The RN15m4 peptide expresses antimicrobial activity against most Gram-positive and Gram-negative bacteria and fungi with a lower minimum inhibition concentration (MIC) than the parent peptide. Besides, the time-killing assay shows that the designed peptide performed its ability to quickly kill bacteria better than the original peptide. Scanning electron microscopy (SEM) displayed the destruction of the bacterial cell membrane caused by the RN15m4 peptide. In addition, the RN15m4 peptide exhibits low hemolytic activity and low cytotoxic activity as good as the template peptide. The RN15m4 peptide performs a range of antimicrobial activities with low cell toxicity. Our study has illustrated the combination approach to peptide design for potent antibiotic peptide discovery.


Assuntos
Jacarés e Crocodilos , Anti-Infecciosos , Animais , Catelicidinas/farmacologia , Catelicidinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
7.
Microorganisms ; 10(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422349

RESUMO

The presence of biofilm within a chronic wound may delay the healing process. Thus, control of biofilm formation and providing bactericidal effect are crucial factors for wound healing management. Alginate-based nanocomposite hydrogels have been suggested as dressing materials for wound treatment, which are employed as a biocompatible matrix. Therefore, in this study, we aimed to develop a biocompatible antimicrobial wound dressing containing AgNPs and demonstrate its efficacy against polymicrobial wound biofilms by using a biofilm flow device to simulate a chronic infected, exuding wound and specific wound environment. The results from agar well diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays showed that TA-AgNPs exhibited antibacterial activity against wound pathogens. Additionally, the Minimum Biofilm Eradication Concentration assay (MBEC) demonstrated it could impair biofilm formation. Importantly, our TA-AgNPs/Alginate hydrogel clearly showed antibacterial activities against Streptococcus pyogenes, Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, we used the biofilm flow device to test the topical antimicrobial hydrogel against a three-species biofilm. We found that TA-AgNPs/Alginate hydrogel significantly showed a 3-4 log reduction in bacterial numbers when applied with multiple doses at 24 h intervals, and was especially effective against the chronic wound pathogen P. aeruginosa. This work highlighted that the TA-AgNPs/Alginate hydrogel is a promising material for treating complex wound biofilms.

8.
J Med Food ; 25(8): 818-827, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35914025

RESUMO

Ultraviolet (UV) radiation generates a range of biological effects in the skin, which includes premature skin aging, hyperpigmentation, and cancer. Therefore, the development of new effective agents for UV-related skin damage remains a challenge in the pharmaceutical industry. This study aims to test the inhibitory effect of crocodile white blood cell (cWBC) extract, a rich source of bioactive peptides, on ultraviolet B (UVB)-induced melanocyte pigmentation. The results showed that cWBC (6.25-400 µg/mL) could inhibit tyrosinase without adduct formation by 12.97 ± 4.20% on average. cWBC pretreatment (25-100 µg/mL) had no cytotoxicity and reduced intracellular melanin to 111.17 ± 5.20% compared with 124.87 ± 7.43 for UVB condition. The protective role of cWBC pretreatment against UVB was exhibited by the promotion of cell proliferation and the prevention of UVB-induced morphological change as observed from F actin staining. The decrease of microphthalmia-associated transcription factor expression levels after cWBC pretreatment might be a mechanism by which cWBC suppresses UVB-induced pigmentation. These results suggest that cWBC could be beneficial for the prevention of UVB-induced skin pigmentation.


Assuntos
Jacarés e Crocodilos , Jacarés e Crocodilos/metabolismo , Animais , Leucócitos , Melaninas/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Monofenol Mono-Oxigenase/metabolismo , Raios Ultravioleta/efeitos adversos
9.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630706

RESUMO

There is a desire to develop new molecules that can combat hyperpigmentation. To this end, the N-terminal cysteine-containing heptapeptide TILI-2 has shown promising preliminary results. In this work, the mechanism by which it works was evaluated using a series of biochemical assays focusing on known biochemical pathways, followed by LC-MS/MS proteomics to discover pathways that have not been considered before. We demonstrate that TILI-2 is a competitive inhibitor of tyrosinase's monophenolase activity and it could potentially scavenge ABTS and DPPH radicals. It has a very low cytotoxicity up to 1400 µM against human fibroblast NFDH cells and macrophage-like RAW 264.7 cells. Our proteomics study revealed that another putative mechanism by which TILI-2 may reduce melanin production involves the disruption of the TGF-ß signaling pathway in mouse B16F1 cells. This result suggests that TILI-2 has potential scope to be used as a depigmenting agent.


Assuntos
Monofenol Mono-Oxigenase , Proteômica , Animais , Cromatografia Líquida , Fibroblastos/efeitos dos fármacos , Humanos , Hiperpigmentação , Melaninas , Camundongos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Células RAW 264.7 , Espectrometria de Massas em Tandem
10.
Molecules ; 27(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35209215

RESUMO

New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Proteômica , Células CACO-2 , Neoplasias do Colo/tratamento farmacológico , Humanos
11.
Molecules ; 27(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35056876

RESUMO

Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure-activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Venenos de Vespas/química , Venenos de Vespas/farmacologia , Substituição de Aminoácidos , Animais , Antibacterianos/síntese química , Peptídeos Antimicrobianos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Modelos Estruturais , Estrutura Secundária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Vespas/química
12.
Eur J Pharmacol ; 917: 174753, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032485

RESUMO

A comparative study of human colon HCT-116 xenograft in nude mice treated with and without peptide RT2 at high doses is performed along with a label-free proteomic analysis of the tissue in order to understand the potential mechanisms by which RT2 acts in vivo against colorectal tumors. RT2 displays no significant systematic toxicity, but reduces tumor growth after either intraperitoneal or intratumoral injection demonstrating it is a safe and efficacious antitumor agent in vivo. Of the 3196 proteins identified by label-free proteomics, 61 proteins appear only in response to RT2 and are involved in cellular processes largely localized in the cells and cell parts. Some of the proteins identified, including CFTR, Wnt7a, TIA1, PADI2, NRBP2, GADL1, LZIC, TLR6, and GPR37, have been reported to suppress tumor growth and are associated with cell proliferation, invasion, metastasis, angiogenesis, apoptosis, and immune evasion. Our work supports their role as tumor biomarkers and reveals RT2 has a complex mechanism of action in vivo.


Assuntos
Neoplasias do Colo , Xenoenxertos
13.
J Antimicrob Chemother ; 77(4): 1012-1019, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35086150

RESUMO

OBJECTIVES: Cutibacterium acnes is one of the common multifactorial causes that play an important role in the pathophysiology of acne vulgaris. We aimed to develop novel antimicrobial peptides for reduction of the hypercolonization. METHODS: Six cationic peptides were derived by de novo designation. The antimicrobial and cytotoxic activities of peptides were investigated. The peptide conformation was determined by circular dichroism spectrometry. The antimicrobial effects of peptides were evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and DNA-binding ability assay. RESULTS: Among designed peptides, WSKK11 and WSRR11 were effective antimicrobials against C. acnes at MICs of 128 and 64 mg/L, respectively. The MICs of WSKK11 against Staphylococcus epidermidis, Staphylococcus aureus and Candida albicans were 8, 8 and 32 mg/L, while those of WSRR11 were 64, 32 and 32 mg/L, respectively. WSKK11 and WSRR11 were less toxic to human erythrocytes (<2%) and not toxic to macrophages, keratinocytes and fibroblasts up to 512 mg/L. WSKK11 and WSRR11 mostly revealed the conformation of the undefined or random coil structures under mimicked environmental conditions. The peptides affected cell surfaces and cell membranes of C. acnes as well as possibly translocating through the cell membrane, observed by a combination of SEM and TEM, respectively. WSKK11 and WSRR11 had the ability to bind bacterial DNA. CONCLUSIONS: The two novel antimicrobial peptides WSKK11 and WSRR11 are members of a new class of antimicrobial agents that could deal with acne problems. Therefore, the antimicrobial peptides may be promising novel active agents for dermatological, beauty and cosmeceutical applications.


Assuntos
Acne Vulgar , Peptídeos Antimicrobianos , Acne Vulgar/tratamento farmacológico , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Propionibacterium acnes/fisiologia
14.
Animals (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944189

RESUMO

Staphylococcus pseudintermedius (S. pseudintermedius) infected wounds can cause seriously delayed wound healing processes in animals. Antimicrobial agents that have antimicrobial and wound healing efficacy have become an essential tool for overcoming this problem. In our previous study, anisotropic AgNPs have been reported to have antimicrobial efficiency against animal and human pathogens, and could be suitable as antimicrobial agents for infected wounds. Here, antimicrobial and wound healing activities of anisotropic AgNPs gels were assessed in vivo. BALB/cAJcl mice wounds were infected by Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Then, antibacterial and wound healing activities were evaluated by bacterial cell count, wound contraction, digital capture, and histology. The results show that anisotropic AgNPs gels could eliminate all bacterial cell infected wounds within 7 days, the same as povidone iodine. Wound healing activity was evaluated by wound contraction (%). The results showed 100% wound contraction in groups treated with anisotropic AgNPs gels within 14 days that was not significantly different from povidone iodine and control gel without AgNPs. However, the digital capture of wounds on day 4 showed that anisotropic AgNPs gel prevented pus formation and reduced scar appearance within 21 days. The histology results exhibit improved collagen fiber alignment that supports scar disappearance. In conclusion, these results indicate that anisotropic AgNPs gels are suitable for treating infected wounds. The gel is effective in eliminating bacteria that supports the natural process of wound repair and also causes reduced scar formation.

15.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641415

RESUMO

The increasing antimicrobial-resistant prevalence has become a severe health problem. It has led to the invention of a new antimicrobial agent such as antimicrobial peptides. Heteroscorpine-1 is an antimicrobial peptide that has the ability to kill many bacterial strains. It consists of 76 amino acid residues with a cecropin-like region in N-terminal and a defensin-like region in the C-terminal. The cecropin-like region from heteroscorpine-1 (CeHS-1) is similar to cecropin B, but it lost its glycine-proline hinge region. The bioinformatics prediction was used to help the designing of mutant peptides. The addition of glycine-proline hinge and positively charged amino acids, the deletion of negatively charged amino acids, and the optimization of the hydrophobicity of the peptide resulted in two mutant peptides, namely, CeHS-1 GP and CeHS-1 GPK. The new mutant peptide showed higher antimicrobial activity than the native peptide without increasing toxicity. The interaction of the peptides with the membrane showed that the peptides were capable of disrupting both the inner and outer bacterial cell membrane. Furthermore, the SEM analysis showed that the peptides created the pore in the bacterial cell membrane resulted in cell membrane disruption. In conclusion, the mutants of CeHS-1 had the potential to develop as novel antimicrobial peptides.


Assuntos
Cecropinas/farmacologia , Membrana Celular/efeitos dos fármacos , Proteínas de Insetos/química , Mutação , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Cecropinas/química , Cecropinas/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Escorpiões , Homologia de Sequência , Relação Estrutura-Atividade
16.
Vet Sci ; 8(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564571

RESUMO

The excessive use of antibiotics in both human and veterinary medicine has contributed to the development and rapid spread of drug resistance in bacteria. Silver nanoparticles (AgNPs) have become a tool of choice that can be used to treat these resistant bacteria. Several studies have shown that AgNPs have antibacterial and wound healing properties. In this study, we evaluated the biological activity of anisotropic AgNPs to develop an antimicrobial gel formulation for treating wound infections. We showed that some anisotropic AgNPs (S2) have an effective antibacterial activity against bacterial pathogens and low cytotoxicity to keratinocytes and fibroblasts in vitro. The MIC and MBC values were in the range of 2-32 µg/mL, and cytotoxicity had IC50 values of 68.20 ± 9.71 µg/mL and 68.65 ± 10.97 µg/mL against human keratinocyte and normal human dermal fibroblast cells, respectively. The anisotropic AgNPs (S2) were used as a gel component and tested for antibacterial activity, including long-term protection, compared with povidone iodine, a common antiseptic agent. The results show that the anisotropic AgNPs can inhibit the growth of most tested bacterial pathogens and provide protection longer than 48 h, whereas povidone iodine only inhibits the growth of some bacteria. This study suggests that anisotropic AgNPs could be used as an alternative antimicrobial agent for treating bacterial skin infection and as a wound healing formulation.

17.
Antibiotics (Basel) ; 10(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356761

RESUMO

Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.

18.
Molecules ; 26(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672903

RESUMO

Burkholderia pseudomallei is the causative pathogen of melioidosis and this bacterium is resistant to several antibiotics. Silver nanoparticles (AgNPs) are an interesting agent to develop to solve this bacterial resistance. Here, we characterize and assess the antimelioidosis activity of AgNPs against these pathogenic bacteria. AgNPs were characterized and displayed a maximum absorption band at 420 nm with a spherical shape, being well-monodispersed and having high stability in solution. The average size of AgNPs is 7.99 ± 1.46 nm. The antibacterial efficacy of AgNPs was evaluated by broth microdilution. The bactericidal effect of AgNPs was further assessed by time-kill kinetics assay. Moreover, the effect of AgNPs on the inhibition of the established biofilm was investigated by the crystal violet method. In parallel, a study of the resistance induction development of B. pseudomallei towards AgNPs with efflux pump inhibiting effect was performed. We first found that AgNPs had strong antibacterial activity against both susceptible and ceftazidime-resistant (CAZ-resistant) strains, as well as being efficiently active against B. pseudomallei CAZ-resistant strains with a fast-killing mode via a bactericidal effect within 30 min. These AgNPs did not only kill planktonic bacteria in broth conditions, but also in established biofilm. Our findings first documented that the resistance development was not induced in B. pseudomallei toward AgNPs in the 30th passage. We found that AgNPs still showed an effective efflux pump inhibiting effect against these bacteria after prolonged exposure to AgNPs at sublethal concentrations. Thus, AgNPs have valuable properties for being a potent antimicrobial agent to solve the antibiotic resistance problem in pathogens.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Burkholderia pseudomallei/fisiologia , Melioidose/tratamento farmacológico , Melioidose/microbiologia , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Taninos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/efeitos dos fármacos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Difusão Dinâmica da Luz , Cinética , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fenótipo , Prata/farmacologia , Eletricidade Estática , Taninos/farmacologia
19.
In Vivo ; 35(1): 215-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33402468

RESUMO

BACKGROUND/AIM: KT2 is a lysine/tryptophan-rich peptide modified from Crocodylus siamensis Leucrocin I. In this study, we examined the cell toxicity, cellular uptake, anti-migration and anti-invasion activities of KT2 in A375.S2 human melanoma cells. MATERIALS AND METHODS: A375.S2 cells were treated with KT2 peptide and then we performed MTT assay, study of cellular uptake by a confocal microscope, wound healing assay, transwell migration/invasion assay, and evaluation of the expression of metastasis-associated proteins. RESULTS: KT2 can be internalized through the plasma membrane and can slightly alter cell morphology, decrease the percentage of viable cells and inhibit cell migration and invasion of A375.S2 cells in a dose-dependent manner. This peptide suppressed MMP-2 activity, as measured by gelatine zymography assay. The protein level of MMP-2 was decreased by KT2. KT2 also down-regulated metastasis pathway-related molecules, including FAK, RhoA, ROCK1, GRB2, SOS-1, p-JNK, p-c-Jun, PI3K, p-AKT (Thr308), p-AKT (Ser473), p-p38, MMP-9, NF-kB, and uPA. CONCLUSION: These results indicate that KT2 inhibits the migration and invasion of human melanoma cells by decreasing MMP-2 and MMP-9 expression through inhibition of FAK, uPA, MAPK, PI3K/AKT NF-kB, and RhoA-ROCK signalling pathways. These findings suggest that KT2 deserves further investigation as an anti-metastatic agent for human melanoma.


Assuntos
Melanoma , Triptofano , Linhagem Celular Tumoral , Movimento Celular , Humanos , Lisina , Metaloproteinase 2 da Matriz/genética , Melanoma/tratamento farmacológico , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Quinases Associadas a rho
20.
Toxicon X ; 8: 100062, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33163957

RESUMO

Spiders use their venom for defence and to capture prey. These venoms contain a cocktail of biologically active compounds that display several different biological activities, such as large molecules and small molecules including peptides, proteins/enzymes, and other components. Thus, venom constituents have attracted the attention of biochemists and pharmacologists over the years. The brown widow spider (Latrodectus geometricus) is a venomous spider found worldwide, including in Thailand. This spider causes human injuries, and the venom has many potential applications. In this study, we investigated the complexity and pharmacology of brown widow spider venom. Spider crude venom was investigated using partial proteome techniques and enzymatic activity, toxicity, and antibacterial activity assessments. We found that crude venom displayed a wide range of molecular masses from 19 to over 97 kDa, with molecular masses of 66 kDa intensely stained. Peptides and proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), which showed that the crude venom contained a variety of substances, including latrotoxins, apolipophorins, hemocyanins, chitinases, arginine kinase, allergen antigen 5-like protein, astacin-like metalloproteases, and serine proteases. High hyaluronidase activity was observed based on the turbidimetric method. The venom presented toxicity in crickets (PD50 = 0.73 ± 0.10 µg/g body weight), and substantial envenomation symptoms, such as slow-motion movement, paralysis, and even death, were noted. Moreover, this venom exhibited potential antibacterial activity against the gram-positive Bacillus subtilis but not the gram-negative Pseudomonas aeruginosa. Spider venom contains numerous molecules with biological activity, such as latrotoxins, which affect insects, and enzymes. In addition to latrotoxins, certain enzymes in venom are hypothesized to exhibit toxicity and antimicrobial activity. This study provides important information for the further development of natural compounds or insecticidal toxins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...