Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 103(6): 606-10, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18949334

RESUMO

In the present study we investigated the flagellin-specific serum (IgG) and fecal (IgA) antibody responses elicited in BALB/c mice immunized with isogenic mutant derivatives of the attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) SL3261 strain expressing phase 1 (FliCi), phase 2 (FljB), or no endogenous flagellin. The data reported here indicate that mice orally immunized with recombinant S. Typhimurium strains do not mount significant systemic or secreted antibody responses to FliCi, FljB or heterologous B-cell epitopes genetically fused to FliCi. These findings are particularly relevant for those interested in the use of flagellins as molecular carriers of heterologous antigens vectored by attenuated S. Typhimurium strains.


Assuntos
Anticorpos Antibacterianos/sangue , Flagelina/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Administração Oral , Animais , Vacinas Bacterianas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas contra Salmonella/administração & dosagem , Vacinas Atenuadas/imunologia
2.
Mem. Inst. Oswaldo Cruz ; 103(6): 606-610, Sept. 2008. graf, tab, ilus
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: lil-495738

RESUMO

In the present study we investigated the flagellin-specific serum (IgG) and fecal (IgA) antibody responses elicited in BALB/c mice immunized with isogenic mutant derivatives of the attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) SL3261 strain expressing phase 1 (FliCi), phase 2 (FljB), or no endogenous flagellin. The data reported here indicate that mice orally immunized with recombinant S. Typhimurium strains do not mount significant systemic or secreted antibody responses to FliCi, FljB or heterologous B-cell epitopes genetically fused to FliCi. These findings are particularly relevant for those interested in the use of flagellins as molecular carriers of heterologous antigens vectored by attenuated S. Typhimurium strains.


Assuntos
Animais , Camundongos , Anticorpos Antibacterianos/sangue , Flagelina/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Administração Oral , Vacinas Bacterianas/imunologia , Camundongos Endogâmicos BALB C , Vacinas contra Salmonella/administração & dosagem , Vacinas Atenuadas/imunologia
3.
J Biol Chem ; 276(16): 13025-33, 2001 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-11278876

RESUMO

The ferric siderophore transporters of the Gram-negative bacterial outer membrane manifest a unique architecture: Their N termini fold into a globular domain that lodges within, and physically obstructs, a transmembrane porin beta-barrel formed by their C termini. We exchanged and deleted the N termini of two such siderophore receptors, FepA and FhuA, which recognize and transport ferric enterobactin and ferrichrome, respectively. The resultant chimeric proteins and empty beta-barrels avidly bound appropriate ligands, including iron complexes, protein toxins, and viruses. Thus, the ability to recognize and discriminate these molecules fully originates in the transmembrane beta-barrel domain. Both the hybrid and the deletion proteins also transported the ferric siderophore that they bound. The FepA constructs showed less transport activity than wild type receptor protein, but the FhuA constructs functioned with turnover numbers that were equivalent to wild type. The mutant proteins displayed the full range of transport functionalities, despite their aberrant or missing N termini, confirming (Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049) that the globular domain within the pore is dispensable to the siderophore internalization reaction, and when present, acts without specificity during solute uptake. These and other data suggest a transport process in which siderophore receptors undergo multiple conformational states that ultimately expel the N terminus from the channel concomitant with solute internalization.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Porinas/metabolismo , Receptores de Superfície Celular , Receptores Virais/química , Receptores Virais/metabolismo , Enterobactina/metabolismo , Escherichia coli/genética , Ferricromo/metabolismo , Genótipo , Cinética , Ligantes , Modelos Moleculares , Reação em Cadeia da Polimerase , Porinas/química , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência
4.
J Biol Chem ; 276(13): 10218-23, 2001 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-11120744

RESUMO

Saccharomyces cerevisiae takes up siderophore-bound iron through two distinct systems, one that requires siderophore transporters of the ARN family and one that requires the high affinity ferrous iron transporter on the plasma membrane. Uptake through the plasma membrane ferrous iron transporter requires that the iron first must dissociate from the siderophore and undergo reduction to the ferrous form. FRE1 and FRE2 encode cell surface metalloreductases that are required for reduction and uptake of free ferric iron. The yeast genome contains five additional FRE1 and FRE2 homologues, four of which are regulated by iron and the major iron-dependent transcription factor, Aft1p, but whose function remains unknown. Fre3p was required for the reduction and uptake of ferrioxamine B-iron and for growth on ferrioxamine B, ferrichrome, triacetylfusarinine C, and rhodotorulic acid in the absence of Fre1p and Fre2p. By indirect immunofluorescence, Fre3p was expressed on the plasma membrane in a pattern similar to that of Fet3p, a component of the high affinity ferrous transporter. Enterobactin, a catecholate siderophore, was not a substrate for Fre3p, and reductive uptake required either Fre1p or Fre2p. Fre4p could facilitate utilization of rhodotorulic acid-iron when the siderophore was present in higher concentrations. We propose that Fre3p and Fre4p are siderophore-iron reductases and that the apparent redundancy of the FRE genes confers the capacity to utilize iron from a variety of siderophore sources.


Assuntos
Membrana Celular/enzimologia , FMN Redutase , Ferro/farmacocinética , Proteínas de Membrana Transportadoras , Oxirredutases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Sideróforos/farmacocinética , Proteínas de Transporte/metabolismo , Desferroxamina/metabolismo , Relação Dose-Resposta a Droga , Enterobactina/metabolismo , Enterobactina/farmacocinética , Compostos Férricos/metabolismo , Ferricromo/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Microscopia de Fluorescência , NADH NADPH Oxirredutases/genética , Oxirredutases/metabolismo , Piperazinas/metabolismo , Plasmídeos/metabolismo , Sideróforos/metabolismo , Fatores de Transcrição/metabolismo
5.
Mol Microbiol ; 37(6): 1306-17, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10998164

RESUMO

Ferric enterobactin is a catecholate siderophore that binds with high affinity (Kd approximately 10-10 M) to the Escherichia coli outer membrane protein FepA. We studied the involvement of aromatic amino acids in its uptake by determining the binding affinities, kinetics and transport properties of site-directed mutants. We replaced seven aromatic residues (Y260, Y272, Y285, Y289, W297, Y309 and F329) in the central part of FepA primary structure with alanine, individually and in double combinations, and determined the ability of the mutant proteins to interact with ferric enterobactin and the protein toxins colicins B and D. All the constructs showed normal expression and localization. Among single mutants, Y260A and F329A were most detrimental, reducing the affinity between FepA and ferric enterobactin 100- and 10-fold respectively. Double substitutions involving Y260, Y272 and F329 impaired (100- to 2500-fold) adsorption of the iron chelate more strongly. For Y260A and Y272A, the drop in adsorption affinity caused commensurate decreases in transport efficiency, suggesting that the target residues primarily act in ligand binding. F329A, like R316A, showed greater impairment of transport than binding, intimating mechanistic involvement during ligand internalization. Furthermore, immunochemical studies localized F329 in the FepA ligand binding site. The mutagenesis results suggested the existence of dual ligand binding sites in the FepA vestibule, and measurements of the rate of ferric enterobactin adsorption to fluoresceinated FepA mutant proteins confirmed this conclusion. The initial, outermost site contains aromatic residues and probably functions through hydrophobic interactions, whereas the secondary site exists deeper in the vestibule, contains both charged and aromatic residues and probably acts through hydrophobic and electrostatic bonds.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Enterobactina/metabolismo , Receptores de Superfície Celular , Alanina , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos Cíclicos/química , Aminoácidos Cíclicos/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Colicinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Ferro/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Transporte Proteico , Homologia de Sequência de Aminoácidos
6.
J Bacteriol ; 182(19): 5359-64, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10986237

RESUMO

The periplasmic protein FepB of Escherichia coli is a component of the ferric enterobactin transport system. We overexpressed and purified the binding protein 23-fold from periplasmic extracts by ammonium sulfate precipitation and chromatographic methods, with a yield of 20%, to a final specific activity of 15,500 pmol of ferric enterobactin bound/mg. Periplasmic fluid from cells overexpressing the binding protein adsorbed catecholate ferric siderophores with high affinity: in a gel filtration chromatography assay the K(d) of the ferric enterobactin-FepB binding reaction was approximately 135 nM. Intrinsic fluorescence measurements of binding by the purified protein, which were more accurate, showed higher affinity for both ferric enterobactin (K(d) = 30 nM) and ferric enantioenterobactin (K(d) = 15 nM), the left-handed stereoisomer of the natural E. coli siderophore. Purified FepB also adsorbed the apo-siderophore, enterobactin, with comparable affinity (K(d) = 60 nM) but did not bind ferric agrobactin. Polyclonal rabbit antisera and mouse monoclonal antibodies raised against nearly homogeneous preparations of FepB specifically recognized it in solid-phase immunoassays. These sera enabled the measurement of the FepB concentration in vivo when expressed from the chromosome (4,000 copies/cell) or from multicopy plasmids (>100,000 copies/cell). Overexpression of the binding protein did not enhance the overall affinity or rate of ferric enterobactin transport, supporting the conclusion that the rate-limiting step of ferric siderophore uptake through the cell envelope is passage through the outer membrane.


Assuntos
Proteínas de Transporte/metabolismo , Enterobactina/metabolismo , Proteínas de Escherichia coli , Compostos Férricos/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Periplásmicas , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Cromatografia de Afinidade/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Radioisótopos de Ferro/metabolismo , Camundongos , Periplasma/metabolismo , Ligação Proteica , Coelhos , Sideróforos/metabolismo
7.
Microb Pathog ; 28(3): 157-67, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10702357

RESUMO

We investigated the antigenic specificity of the humoral immune response to infection by Salmonella typhimurium, by competitive inhibition enzyme-linked immunosorbent assay and Western immunoblots. A panel of eight murine monoclonal antibodies, raised to OmpC and OmpD porins and lipopolysaccharide (LPS)-O antigens, was used to define the specificity of the polyclonal immune response in mice. The monoclonal antibody panel recognized five distinct epitopes; these were localized to surface-exposed loops of OmpC and OmpD porin, to the "eye-let" forming loop L3 of OmpC/OmpD, and to LPS-O4 and O5 factors. The immune mouse serum raised to infections with S. typhimurium LT-2 strain WB600 (wild-type) competitively inhibited the binding of biotin-labelled monoclonal antibodies to the epitopes that they recognize, indicating that all five epitopes were targets of the host immune response to natural infection. However, only two epitopes, one within a surface-exposed loop of OmpC porin, and the other in the LPS-O4 factor, were immunodominant. Furthermore, the bacterial LPS core and O-antigen structure influenced the immune response to the porins. Surface epitopes of porins were dominant in the rough strain SH5014 (rfa), whereas the immune recognition of LPS epitopes was predominant in mice infected with the smooth, wild-type strain (WB600). Finally, the immune response to LPS epitopes O4 and O5 was more pronounced in mice immunized with heat-killed cells than those infected with live S. typhimurium.


Assuntos
Epitopos Imunodominantes/análise , Lipopolissacarídeos/imunologia , Porinas/imunologia , Salmonella typhimurium/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Soros Imunes/imunologia , Lipopolissacarídeos/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Porinas/isolamento & purificação , Salmonella typhimurium/química
8.
Res Microbiol ; 150(6): 385-94, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10466406

RESUMO

We used enzyme-linked immunosorbent assay (ELISA), competitive inhibition ELISA, flow cytometry and western immunoblots to study the antigenic specificity of two monoclonal antibodies (mAbs) raised against the cell surface antigens of Salmonella typhimurium. These mAbs (SH6.11 and WB60.4) protect CAF1 (Ity(r)) mice against endotoxemia and mouse typhoid. We found that SH6.11 and WB60.4 recognize Salmonella serogroup B-specific lipopolysaccharide O4 and O5 factors, respectively. These mAbs did not bind to Salmonella serotypes that belong to serogroup A, D1, E4, G2, or R and did not cross-react with other enteric and nonenteric bacterial species.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Epitopos/imunologia , Antígenos O/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Citometria de Fluxo , Camundongos , Antígenos O/química , Salmonelose Animal/prevenção & controle
9.
Mol Microbiol ; 32(6): 1153-65, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10383757

RESUMO

The siderophore ferric enterobactin enters Escherichia coli through the outer membrane (OM) porin FepA, which contains an aqueous transmembrane channel that is normally occluded by other parts of the protein. After binding the siderophore at a site within the surface loops, FepA undergoes conformational changes that promote ligand internalization. We assessed the participation of different loops in ligand recognition and uptake by creating and analysing a series of deletions. We genetically engineered 26 mutations that removed 9-75 amino acids from nine loops and two buried regions of the OM protein. The mutations had various effects on the uptake reaction, which we discerned by comparing the substrate concentrations of half-maximal binding (Kd) and uptake (Km): every loop deletion affected siderophore transport kinetics, decreasing or eliminating binding affinity and transport efficiency. We classified the mutations in three groups on the basis of their slight, strong or complete inhibition of the rate of ferric enterobactin transport across the OM. Finally, characterization of the FepA mutants revealed that prior experiments underestimated the affinity of FepA for ferric enterobactin: the interaction between the protein and the ferric siderophore is so avid (Kd < 0.2 nM) that FepA tolerated the large reductions in affinity that some loop deletions caused without loss of uptake functionality. That is, like other porins, many of the loops of FepA are superficially dispensable: ferric enterobactin transport occurred without them, at levels that allowed bacterial growth.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Enterobactina/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/fisiologia , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Colicinas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Deleção de Sequência
10.
J Bacteriol ; 181(9): 2895-901, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10217784

RESUMO

FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Enterobactina/metabolismo , Compostos Férricos/metabolismo , Neisseria gonorrhoeae/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/imunologia , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/imunologia , Sequência Conservada , Reações Cruzadas , Ferro/metabolismo , Dados de Sequência Molecular , Neisseria gonorrhoeae/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
11.
J Bacteriol ; 180(24): 6689-96, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9852016

RESUMO

The ligand-gated outer membrane porin FepA serves Escherichia coli as the receptor for the siderophore ferric enterobactin. We characterized the ability of seven analogs of enterobactin to supply iron via FepA by quantitatively measuring the binding and transport of their 59Fe complexes. The experiments refuted the idea that chirality of the iron complex affects its recognition by FepA and demonstrated the necessity of an unsubstituted catecholate coordination center for binding to the outer membrane protein. Among the compounds we tested, only ferric enantioenterobactin, the synthetic, left-handed isomer of natural enterobactin, and ferric TRENCAM, which substitutes a tertiary amine for the macrocyclic lactone ring of ferric enterobactin but maintains an unsubstituted catecholate iron complex, were recognized by FepA (Kd approximately 20 nM). Ferric complexes of other analogs (TRENCAM-3,2-HOPO; TREN-Me-3,2-HOPO; MeMEEtTAM; MeME-Me-3,2-HOPO; K3MECAMS; agrobactin A) with alterations to the chelating groups and different net charge on the iron center neither adsorbed to nor transported through FepA. We also compared the binding and uptake of ferric enterobactin by homologs of FepA from Bordetella bronchisepticus, Pseudomonas aeruginosa, and Salmonella typhimurium in the native organisms and as plasmid-mediated clones expressed in E. coli. All the transport proteins bound ferric enterobactin with high affinity (Kd /=50 pmol/min/10(9) cells) in their own particular membrane environments. However, the FepA and IroN proteins of S. typhimurium failed to efficiently function in E. coli. For E. coli, S. typhimurium, and P. aeruginosa, the rate of ferric enterobactin uptake was a sigmoidal function of its concentration, indicating a cooperative transport reaction involving multiple interacting binding sites on FepA.


Assuntos
Enterobactina/análogos & derivados , Enterobactina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Bordetella bronchiseptica/metabolismo , Bordetella pertussis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Ferro , Estrutura Molecular , Pseudomonas aeruginosa/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Salmonella typhimurium/metabolismo
12.
J Immunol ; 160(10): 5088-97, 1998 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9590260

RESUMO

We have prepared cross-linked, bispecific mAb complexes (heteropolymers) that facilitate rapid and quantitative binding of a prototype pathogen, Escherichia coli, to the complement receptor (CR1) on primate erythrocytes. Incubation of the erythrocyte-heteropolymer-E. coli complexes with freshly isolated human mononuclear cells leads to rapid removal of the E. coli from the erythrocytes, and phagocytosis and killing of the bacteria. The erythrocytes are not lysed or phagocytosed during this transfer reaction, but both heteropolymer and CR1 are removed from the erythrocytes along with the E. coli. These findings parallel observations made in previous in vivo experiments in which heteropolymers were used to facilitate clearance of innocuous prototype pathogens in a monkey model. It should now be possible to extend the heteropolymer paradigm to a live pathogen in a primate model.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Eritrócitos/imunologia , Escherichia coli/imunologia , Monócitos/imunologia , Fagocitose , Receptores de Complemento 3b/fisiologia , Animais , Citocalasina D/farmacologia , Ácido Edético/farmacologia , Humanos , Macaca , Camundongos
13.
Curr Opin Microbiol ; 1(2): 238-47, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10066479

RESUMO

Porins mediate the uptake of nutrients across the outer membrane of Gram-negative bacteria. For general porins like OmpF, electrophysicoloigcal experiments now establish that the charged residues within their channels primarily modulate pore selectivity, rather than voltage-gated switching between open and closed states. Recent studies on the maltoporin, LamB, solidify the importance of its 'greasy slide' aromatic residues during sugar transport, and suggest the involvement of L9, in the exterior vestibule, as the initial maltodextrin binding site. The application of biophysical methodologies to the TonB-dependent porin, FepA, ostensibly reveal the opening and closing of its channel during ligand uptake, a phenomenon that was predicted but not previously demonstrated.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/metabolismo , Porinas/metabolismo , Receptores de Superfície Celular , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte/metabolismo , Ativação do Canal Iônico , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Porinas/química , Receptores Virais/metabolismo
14.
J Biol Chem ; 272(35): 21950-5, 1997 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-9268330

RESUMO

The Escherichia coli FepA protein is an energy- and TonB-dependent, ligand-binding porin that functions as a receptor for the siderophore ferric enterobactin and colicins B and D. We characterized the kinetic and thermodynamic parameters associated with the initial, energy-independent steps in ligand binding to FepA. In vivo experiments produced Kd values of 24, 185, and 560 nM for ferric enterobactin, colicin B, and colicin D, respectively. The siderophore and colicin B bound to FepA with a 1:1 stoichiometry, but colicin D bound to a maximum level that was 3-fold lower. Preincubation with ferric enterobactin prevented colicin B binding, and preincubation with colicin B prevented ferric enterobactin binding. Colicin B release from FepA was unexpectedly slow in vivo, about 10-fold slower than ferric enterobactin release. This slow dissociation of the colicin B.FepA complex facilitated the affinity purification of FepA and FepA mutants with colicin B-Sepharose. Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Canais Iônicos/metabolismo , Ferro/metabolismo , Receptores de Superfície Celular/metabolismo , Ligação Competitiva , Cromatografia de Afinidade , Colicinas/metabolismo , Detergentes , Enterobactina/metabolismo , Cinética , Ligantes , Octoxinol , Ligação Proteica
15.
Res Microbiol ; 148(5): 375-87, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9765816

RESUMO

LamB specifically facilitates the diffusion of maltose and maltodextrins through the bacterial outer membrane, and acts as a general (i.e. non-specific) porin for small hydrophilic molecules (< 600 daltons). We reported previously that deletion of the last predicted external domain near the C-terminus of the Eschirichia coli LamB protein (residues 376 to 405), affected in vivo the binding and transport of maltodextrins (specific pore functions), and also increased bacterial sensitivity to large antibiotics. The residues covered by this deletion correspond almost exactly to the major cell surface loop of LamB on the structural model based on X-ray crystallography (loop L9, residues 375 to 405). The L9 loop comprises a large central portion, which varies in size and sequence between the LamB proteins from different species. This variable region is flanked by two highly charged and conserved portions, which overlap with the adjacent beta strands. To identify subregions in L9 that influence the pore properties of LamB, we constructed and analysed nine mutants in loop L9 and its flanking sequences. Deletion of the 23-amino-acids central variable portion of the loop (residues 379 to 401), and deletion of the downstream conserved region (residues 402 to 409), only moderately affected specific maltoporin function. In contrast, deletion of the conserved region (residues 372 to 378) upstream of the variable portion strongly decreased specific maltoporin function and also increased sensitivity to large antibiotics, accounting for most, if not all, of the effects of the complete deletion of L9.


Assuntos
Escherichia coli/metabolismo , Porinas/genética , Receptores Virais/genética , Receptores Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa , Bacteriófago lambda , Sequência Conservada , Escherichia coli/genética , Escherichia coli/virologia , Cinética , Maltose/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fenótipo , Porinas/química , Porinas/metabolismo , Conformação Proteica , Receptores Virais/química , Deleção de Sequência , Homologia de Sequência de Aminoácidos
16.
Science ; 276(5316): 1261-4, 1997 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-9157886

RESUMO

Ligand-gated membrane channels selectively facilitate the entry of iron into prokaryotic cells. The essential role of iron in metabolism makes its acquisition a determinant of bacterial pathogenesis and a target for therapeutic strategies. In Gram-negative bacteria, TonB-dependent outer membrane proteins form energized, gated pores that bind iron chelates (siderophores) and internalize them. The time-resolved operation of the Escherichia coli ferric enterobactin receptor FepA was observed in vivo with electron spin resonance spectroscopy by monitoring the mobility of covalently bound nitroxide spin labels. A ligand-binding surface loop of FepA, which normally closes its transmembrane channel, exhibited energy-dependent structural changes during iron and toxin (colicin) transport. These changes were not merely associated with ligand binding, but occurred during ligand uptake through the outer membrane bilayer. The results demonstrate by a physical method that gated-porin channels open and close during membrane transport in vivo.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte/metabolismo , Enterobactina/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Ativação do Canal Iônico , Porinas/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/genética , Colicinas/farmacologia , Óxidos N-Cíclicos , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Enterobactina/farmacologia , Compostos Férricos/metabolismo , Compostos Férricos/farmacologia , Indicadores e Reagentes , Ligantes , Proteínas de Membrana/metabolismo , Mesilatos , Conformação Proteica , Marcadores de Spin
17.
Proc Natl Acad Sci U S A ; 94(9): 4560-5, 1997 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-9114029

RESUMO

Siderophores and colicins enter bacterial cells through TonB-dependent outer membrane proteins. Using site-directed substitution mutagenesis, we studied ligand recognition by a prototypic Escherichia coli siderophore receptor, FepA, that binds the iron chelate ferric enterobactin and colicins B and D. These genetic experiments identified a common binding site for two of the three ligands, containing multiple positive charges, within cell surface residues of FepA. Elimination of single residues in this region did not impair the adsorption or transport of ferric enterobactin, but double mutagenesis in the charge cluster identified amino acids (Arg-286 and Arg-316) that participate in siderophore binding and function in FepA-mediated killing by colicins B and D. Ferric enterobactin binding, furthermore, prevented covalent modification of FepA within this domain by either a fluorescent probe or an arginine-specific reagent, corroborating the involvement of this site in ligand recognition. These results identify, for the first time, residues in a TonB-dependent outer membrane protein that participate in ligand binding. They also explain the competition between ferric enterobactin and the colicins on the bacterial cell surface: all three ligands interact with the same arginine residues within FepA during their penetration through the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Colicinas/metabolismo , Enterobactina/metabolismo , Receptores de Superfície Celular/metabolismo , Sideróforos/metabolismo , Sequência de Aminoácidos , Arginina/genética , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação/genética , Transporte Biológico , Proteínas de Transporte/genética , Análise Mutacional de DNA , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Receptores de Superfície Celular/genética , Homologia de Sequência de Aminoácidos
18.
Behring Inst Mitt ; (98): 135-42, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9382734

RESUMO

We previously developed a general procedure which allows the genetic coupling of a chosen foreign linear epitope in different regions of a carrier protein. By using as carriers, two bacterial envelope proteins, the LamB and MalE proteins of E. coli K12, we were able to express the same epitope in different sites of the two proteins and in different compartments of the bacteria. This allowed us to analyze the influence of the localization in E. coli cells of a foreign B-cell epitope on the induction of specific antibody responses, and the role of the molecular environment on the immunological properties of foreign B- or T-cell epitopes, using either purified hybrid proteins or live recombinant bacteria. Several LamB and MalE hybrid proteins were expressed in the aroA attenuated strain of S. typhimurium, SL3261. Immunizations of mice with live recombinant bacteria by the intravenous route showed that it was possible to induce humoral responses against inserted foreign sequences. In order to improve the in vivo stability of the plasmids carrying the different contructions, and to increase the amounts of recombinant LamB and MalE hybrid proteins expressed in vivo, the LamB and malE genes were placed under the control of the anaerobically inducible pnirBpromoter control. The genetic factors susceptible of influencing the immune response to recombinant Salmonella in mice were also studied.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vacinas Bacterianas , Proteínas de Transporte/imunologia , Epitopos/imunologia , Proteínas de Escherichia coli , Escherichia coli/imunologia , Proteínas de Transporte de Monossacarídeos , Proteínas Periplásmicas de Ligação , Receptores Virais/imunologia , Vacinas Atenuadas , Vacinas Sintéticas , 3-Fosfoshikimato 1-Carboxiviniltransferase , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/imunologia , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Clonagem Molecular , Desenho de Fármacos , Epitopos/biossíntese , Proteínas Ligantes de Maltose , Camundongos , Modelos Estruturais , Porinas , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Receptores Virais/biossíntese , Receptores Virais/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Salmonella typhimurium/genética , Linfócitos T/imunologia
19.
Microb Pathog ; 21(4): 249-63, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8905614

RESUMO

Monoclonal antibodies (MAbs) were raised against the outer membrane (OM) antigens of Salmonella typhimurium. Enzyme-linked immunosorbent assays and Western immunoblots indicated that 10 MAbs in the panel were specific for surface epitopes, and 10 recognized buried epitopes of OmpC or OmpD porins; three MAbs reacted with smooth lipo-polysaccharide (LPS), two bound rough LPS, and the remaining three MAbs apparently reacted with a porin-LPS complex. We screened these MAbs and immune polyclonal sera in CAF1 (Ity) mice for their relative immunoprotective potential against a challenge with 10 to 500 LD50 of the virulent S. typhimurium LT-2 strain WB600, or against two LD50 of purified OM from this organism. Polyclonal sera that contained high titers of antibodies to porin monomers and trimers, and LPS, provided significant protection (33 to 100% survivors). Antiporin MAbs, when administered individually, did not protect or prolong the survival of mice. A mixture of MAbs with specificity for the surface, but not buried epitopes of porins, prolonged the survival of mice against endotoxemia, but none provided significant protection against mouse typhoid. MAbs specific for smooth (but not rough) LPS on the other hand, conferred significant protection against endotoxemia and mouse typhoid. Finally, MAbs that presumably recognized epitopes present in porin-LPS complexes, were also protective against endotoxemia and mouse typhoid. These results support the role of antibodies to LPS O-chains, porin-LPS complexes, and to a lesser degree, native porins in acquired resistance to infection by S. typhimurium.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Imunização Passiva , Lipopolissacarídeos/imunologia , Porinas/imunologia , Salmonelose Animal/prevenção & controle , Salmonella typhimurium/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Endotoxemia/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C
20.
J Bacteriol ; 178(12): 3447-56, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8655540

RESUMO

We previously developed a genetic approach to study, with a single antibody, the topology of the outer membrane protein LamB, an Escherichia coli porin with specificity towards maltodextrins and a receptor for bacteriophage lambda. Our initial procedure consisted of inserting at random the same reporter epitope (the C3 neutralization epitope from poliovirus) into permissive sites of LamB (i.e., sites which tolerate insertions without deleterious effects on the protein activities or the cell). A specific monoclonal antibody was then used to examine the position of the inserted epitope with respect to the protein and the membrane. In the present work, we set up a site-directed procedure to insert the C3 epitope at new sites in order to distinguish between two-dimensional folding models. This allowed us to identify two new surface loops of LamB and to predict another periplasmic exposed region. The results obtained by random and directed epitope tagging are analyzed in light of the recently published X-ray structure of the LamB protein. Study of 23 hybrid LamB-C3 proteins led to the direct identification of five of the nine external loops (L4, L5, L6, L7, and L9) and led to the prediction of four periplasmic loops (I1, I4, I5, and I8) of LamB. Nine of the hybrid proteins did not lead to topological conclusions, and none led to the wrong predictions or conclusions. The comparison indicates that parts of models based on secondary structure predictions alone are not reliable and points to the importance of experimental data in the establishment of outer membrane protein topological models. The advantages and limitations of genetic foreign epitope insertion for the study of integral membrane proteins are discussed.


Assuntos
Porinas/ultraestrutura , Receptores Virais/ultraestrutura , Proteínas da Membrana Bacteriana Externa , Sequência de Bases , Análise Mutacional de DNA , Primers do DNA/química , Epitopos , Proteínas de Membrana/imunologia , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Porinas/imunologia , Estrutura Terciária de Proteína , Receptores Virais/imunologia , Relação Estrutura-Atividade , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...