Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(2): 024501, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648106

RESUMO

Space plasma instruments provide 3D particle velocity distribution functions. Because of telemetry limitations, these cannot be transmitted in high time resolution and the plasma needs to be characterized by moments of the velocity distribution function. These moment uncertainties have vital effects on the reliability and accuracy of onboard plasma moments. We assess the measurement accuracy for magnetosheath and solar wind ions using an ion spectrometer with an asymmetric field of view designed for the all-sky measurement of low-energy ions in the magnetosheath and solar wind. We focus on moment uncertainties for the ideal spectrometer, not considering the background counts, which may have considerable effects on the uncertainties in real life. To obtain number density, bulk velocity, and temperature, different orders of moments are integrated assuming a Maxwellian velocity distribution. Based on the design specifications, we use simulations to estimate systematic and random errors for typical plasma conditions. We find that the spectrometer resolution is adequate for determining the density of solar wind (∼7% error) and magnetosheath ions (∼4% error). The resolution is also adequate for determining the temperature of solar wind (∼10% error) and magnetosheath ions (∼2% error). For high speed flows with a bulk velocity of 750 km/s and a temperature of 20 eV, the maximum density and temperature errors become 9% and 7%, respectively. The bulk velocity errors are less than 2% for all cases. The contributions of heavy ions to the systematic errors are less than 5% for magnetosheath ions and less than 8% for solar wind ions.

2.
Nature ; 404(6780): 848-50, 2000 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-10786785

RESUMO

Magnetic reconnection is a process that converts magnetic energy into bi-directional plasma jets; it is believed to be the dominant process by which solar-wind energy enters the Earth's magnetosphere. This energy is subsequently dissipated by magnetic storms and aurorae. Previous single-spacecraft observations revealed only single jets at the magnetopause--while the existence of a counter-streaming jet was implicitly assumed, no experimental confirmation was available. Here we report in situ two-spacecraft observations of bi-directional jets at the magnetopause, finding evidence for a stable and extended reconnection line; the latter implies substantial entry of the solar wind into the magnetosphere. We conclude that reconnection is determined by large-scale interactions between the solar wind and the magnetosphere, rather than by local conditions at the magnetopause.

3.
Adv Space Res ; 17(2): 37-45, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-11540369

RESUMO

The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment.


Assuntos
Radiação Cósmica , Partículas Elementares , Meio Ambiente Extraterreno , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Elétrons , Magnetismo , Nêutrons , Prótons
4.
Science ; 232(4748): 366-9, 1986 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17792146

RESUMO

Conclusive evidence is presented for the existence of energetic ( approximately 535,0000 to 150,000 electron volts), heavy (>-12 atomic mass units), singly charged cometary ions within approximately 1.5 x 10(6) kilometers of comet Giacobini-Zinner. The observations were made with the University of Maryland/Max-Planck-Institut ultralow-energy charge analyzer on, the International Cometary Explorer spacecraft. The most direct evidence for establishing the mass of these ions was obtained from an analysis of the energy signals in one of the solid-state detectors; it is significant at the three-sigma level. Maximum fluxes were recorded approximately 1 hour before and approximately 1 hour after closest approach to the cometary nucleus. Transformation of the particle angular distributions observed at approximately 50,000 kilometers radial distance from the comet during the inbound pass into a rest frame in which the distributions are nearly isotropic requires a transformation velocity that is consistent with the local solar wind velocity if one assumes that these particles are primarily singly ionized with a mass of 18 +/- 6 atomic mass units. The existence of a frame of reference in which these water-group ions were isotropic implies that they underwent strong pitch angle scattering after their ionization. Particle energies in the rest frame extend to substantially higher values than would be expected if these ions were locally ionized and then picked up by the solar wind, implying that the ions were accelerated or heated. The derived ion density, approximately 0.1 per cubic centimeter, is consistent with a crude model for the production and transport of pickup ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...