Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Synerg ; 8: 100450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314398

RESUMO

This research assesses the potential for misidentification of sex in individuals of South Asian ancestry using the Walker (2008) morphological skull sex estimation standard [1]. Chromosomal sex was assessed using proteomic analysis targeting sex chromosome-specific amylogenic peptides. Results showed that the Walker method produced incorrect classification for 36.7 % of individuals. Overwhelmingly, those incorrectly assigned were chromosomally male. Misidentification was due to males within the group having lower trait scores (i.e., more gracile traits) than the standard would predict. There was also a high level of overlap in trait scores between male and females indicating reduced expression of sexual dimorphism. The use of established multivariate statistical techniques improved accuracy of sex estimation in some cases, but larger osteological data sets from South Asian individuals are required to develop population-specific standards. We suggest that peptide analysis may provide a useful tool for the forensic anthropologist when assessing sex in populations without population specific osteological standards.

2.
Sci Rep ; 14(1): 282, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168501

RESUMO

The insular region of Wallacea has become a focal point for studying Pleistocene human ecological and cultural adaptations in island environments, however, little is understood about early burial traditions during the Pleistocene. Here we investigate maritime interactions and burial practices at Ratu Mali 2, an elevated coastal cave site on the small island of Kisar in the Lesser Sunda Islands of eastern Indonesia dated to 15,500-3700 cal. BP. This multidisciplinary study demonstrates extreme marine dietary adaptations, engagement with an extensive exchange network across open seas, and early mortuary practices. A flexed male and a female, interred in a single grave with abundant shellfish and obsidian at Ratu Mali 2 by 14.7 ka are the oldest known human burials in Wallacea with established funerary rites. These findings highlight the impressive flexibility of our species in marginal environments and provide insight into the earliest known ritualised treatment of the dead in Wallacea.


Assuntos
Arqueologia , Sepultamento , Humanos , Masculino , Feminino , Indonésia , Cavernas , Práticas Mortuárias
3.
Adv Biol (Weinh) ; 8(2): e2300448, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953659

RESUMO

For effective translation of research from tissue engineering and regenerative medicine domains, the cell-instructive extracellular matrix (ECM) of specific tissues must be accurately realized. As adipose tissue is gaining traction as a biomaterial for soft tissue reconstruction, with highly variable clinical outcomes obtained, a quantitative investigation of the adipose tissue matrisome is overdue. In this study, the human adipose tissue matrisome is profiled using quantitative sequential windowed acquisition of all theoretical fragment ion spectra - mass spectrometry (SWATH-MS) proteomics across a cohort of 13 fat-grafting patients, to provide characterization of ECM proteins within the tissue, and to understand human population variation. There are considerable differences in the expression of matrisome proteins across the patient cohort, with age and lipoaspirate collection technique contributing to the greatest variation across the core matrisome. A high abundance of basement membrane proteins (collagen IV and heparan sulfate proteoglycan) is detected, as well as fibrillar collagens I and II, reflecting the hierarchical structure of the tissue. This study provides a comprehensive proteomic evaluation of the adipose tissue matrisome and contributes to an enhanced understanding of the influence of the matrisome in adipose-related pathologies by providing a healthy reference cohort and details an experimental pipeline that can be further exploited for future biomaterial development.


Assuntos
Matriz Extracelular , Proteômica , Humanos , Proteômica/métodos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/metabolismo , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo
4.
Am J Biol Anthropol ; 183(1): 141-156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925739

RESUMO

OBJECTIVES: There are few bioarcheological analyses of life experiences in colonial period Aotearoa New Zealand, despite this being a time of major adaptation and social change. In our study, early life histories are constructed from multi-isotope and enamel peptide analysis of permanent first molars associated with Victorian era dental practices operating between AD 1881 and 1905 in Invercargill. Chemical analyses of the teeth provide insight into the childhood feeding practices, diet, and mobility of the people who had their teeth extracted. MATERIALS AND METHODS: Four permanent left mandibular first molars were analyzed from a cache of teeth discovered at the Leviathan Gift Depot site during excavations in 2019. The methods used were: (1) enamel peptide analysis to assess chromosomal sex; (2) bulk (δ13 Ccarbonate ) and incremental (δ13 Ccollagen and δ15 N) isotope analysis of dentin to assess childhood diet; and (3) strontium (87 Sr/86 Sr) and oxygen (δ18 O) isotope analysis of enamel to assess childhood residency. Two modern permanent first molars from known individuals were analyzed as controls. RESULTS: The archaeological teeth were from three chromosomal males and one female. The protein and whole diets were predominately based on C3 -plants and domestic animal products (meat and milk). A breastfeeding signal was only identified in one historic male. All individuals likely had childhood residences in Aotearoa. DISCUSSION: Unlike most bioarcheological studies that rely on the remains of the dead, the teeth analysed in this study were extracted from living people. We suggest that the dental patients were likely second or third generation colonists to Aotearoa, with fairly similar childhood diets. They were potentially lower-class individuals either living in, or passing through, the growing colonial center of Invercargill.


Assuntos
Isótopos , Dente , Masculino , Feminino , Animais , Humanos , Criança , Nova Zelândia , Isótopos/análise , Dente/química , Dente Molar/química , Peptídeos
5.
Sci Rep ; 13(1): 22068, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086949

RESUMO

Of those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ~ 10% develop the chronic post-viral debilitating condition, long COVID (LC). Although LC is a heterogeneous condition, about half of cases have typical post-viral fatigue with onset and symptoms that are very similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A key question is whether these conditions are closely related. ME/CFS is a post-stressor fatigue condition that arises from multiple triggers. To investigate the pathophysiology of LC, a pilot study of patients (n = 6) and healthy controls (n = 5) has used quantitative proteomics to discover changes in peripheral blood mononuclear cell (PBMC) proteins. A principal component analysis separated all long COVID patients from healthy controls. Analysis of 3131 proteins identified 162 proteins differentially regulated, of which 37 were related to immune functions, and 21 to mitochondrial functions. Markov cluster analysis identified clusters involved in immune system processes, and two aspects of gene expression-spliceosome and transcription. These results were compared with an earlier dataset of 346 differentially regulated proteins in PBMC's from ME/CFS patients (n = 9) analysed by the same methodology. There were overlapping protein clusters and enriched molecular pathways particularly in immune functions, suggesting the two conditions have similar immune pathophysiology as a prominent feature, and mitochondrial functions involved in energy production were affected in both conditions.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Viroses , Humanos , Leucócitos Mononucleares/metabolismo , Proteoma/metabolismo , Síndrome de COVID-19 Pós-Aguda , Projetos Piloto , SARS-CoV-2 , COVID-19/metabolismo , Viroses/metabolismo
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108327

RESUMO

Secreted amyloid precursor protein alpha (sAPPα), processed from a parent mammalian brain protein, amyloid precursor protein, can modulate learning and memory. Recently it has been shown to modulate the transcriptome and proteome of human neurons, including proteins with neurological functions. Here, we analysed whether the acute administration of sAPPα facilitated changes in the proteome and secretome of mouse primary astrocytes in culture. Astrocytes contribute to the neuronal processes of neurogenesis, synaptogenesis and synaptic plasticity. Cortical mouse astrocytes in culture were exposed to 1 nM sAPPα, and changes in both the whole-cell proteome (2 h) and the secretome (6 h) were identified with Sequential Window Acquisition of All Theoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS). Differentially regulated proteins were identified in both the cellular proteome and secretome that are involved with neurologically related functions of the normal physiology of the brain and central nervous system. Groups of proteins have a relationship to APP and have roles in the modulation of cell morphology, vesicle dynamics and the myelin sheath. Some are related to pathways containing proteins whose genes have been previously implicated in Alzheimer's disease (AD). The secretome is also enriched in proteins related to Insulin Growth Factor 2 (IGF2) signaling and the extracellular matrix (ECM). There is the promise that a more specific investigation of these proteins will help to understand the mechanisms of how sAPPα signaling affects memory formation.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Camundongos , Animais , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Proteoma/metabolismo , Astrócitos/metabolismo , Secretoma , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mamíferos/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(18): e2221047120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098065

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contains an active site Cys and is one of the most sensitive cellular enzymes to oxidative inactivation and redox regulation. Here, we show that inactivation by hydrogen peroxide is strongly enhanced in the presence of carbon dioxide/bicarbonate. Inactivation of isolated mammalian GAPDH by H2O2 increased with increasing bicarbonate concentration and was sevenfold faster in 25 mM (physiological) bicarbonate compared with bicarbonate-free buffer of the same pH. H2O2 reacts reversibly with CO2 to form a more reactive oxidant, peroxymonocarbonate (HCO4-), which is most likely responsible for the enhanced inactivation. However, to account for the extent of enhancement, we propose that GAPDH must facilitate formation and/or targeting of HCO4- to promote its own inactivation. Inactivation of intracellular GAPDH was also strongly enhanced by bicarbonate: treatment of Jurkat cells with 20 µM H2O2 in 25 mM bicarbonate buffer for 5 min caused almost complete GAPDH inactivation, but no loss of activity when bicarbonate was not present. H2O2-dependent GAPDH inhibition in bicarbonate buffer was observed even in the presence of reduced peroxiredoxin 2 and there was a significant increase in cellular glyceraldehyde-3-phosphate/dihydroxyacetone phosphate. Our results identify an unrecognized role for bicarbonate in enabling H2O2 to influence inactivation of GAPDH and potentially reroute glucose metabolism from glycolysis to the pentose phosphate pathway and NAPDH production. They also demonstrate what could be wider interplay between CO2 and H2O2 in redox biology and the potential for variations in CO2 metabolism to influence oxidative responses and redox signaling.


Assuntos
Dióxido de Carbono , Peróxido de Hidrogênio , Humanos , Animais , Peróxido de Hidrogênio/química , Dióxido de Carbono/química , Bicarbonatos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Peroxirredoxinas/metabolismo , Oxirredução , Mamíferos/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047281

RESUMO

Mass spectrometry is a powerful technique for investigating renal pathologies and identifying biomarkers, and efficient protein extraction from kidney tissue is essential for bottom-up proteomic analyses. Detergent-based strategies aid cell lysis and protein solubilization but are poorly compatible with downstream protein digestion and liquid chromatography-coupled mass spectrometry, requiring additional purification and buffer-exchange steps. This study compares two well-established detergent-based methods for protein extraction (in-solution sodium deoxycholate (SDC); suspension trapping (S-Trap)) with the recently developed sample preparation by easy extraction and digestion (SPEED) method, which uses strong acid for denaturation. We compared the quantitative performance of each method using label-free mass spectrometry in both sheep kidney cortical tissue and plasma. In kidney tissue, SPEED quantified the most unique proteins (SPEED 1250; S-Trap 1202; SDC 1197). In plasma, S-Trap produced the most unique protein quantifications (S-Trap 150; SDC 148; SPEED 137). Protein quantifications were reproducible across biological replicates in both tissue (R2 = 0.85-0.90) and plasma (SPEED R2 = 0.84; SDC R2 = 0.76, S-Trap R2 = 0.65). Our data suggest SPEED as the optimal method for proteomic preparation in kidney tissue and S-Trap or SPEED as the optimal method for plasma, depending on whether a higher number of protein quantifications or greater reproducibility is desired.


Assuntos
Detergentes , Espectrometria de Massas em Tandem , Animais , Ovinos , Detergentes/química , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas
9.
PLoS One ; 18(2): e0272898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763642

RESUMO

Royal jelly and honey are two substances produced successively by the worker bee caste. Modern proteomics approaches have been used to explore the protein component of each substance independently, but to date none have quantitatively compared the protein profile of honey and royal jelly directly. Sequential window acquisition of all theoretical fragment-ion spectra mass spectrometry (SWATH-MS) was used to compare protein quantities of bee origin in manuka and clover honey to royal jelly. Two analysis techniques identified 76 proteins in total. Peptide intensity was directly compared for a subset of 31 proteins that were identified with high confidence, and the relative changes in protein abundance were compared between each honey type and royal jelly. Major Royal Jelly Proteins (MRJPs) had similar profiles in both honeys, except MRJP6, which was significantly more abundant in clover honey. Proteins involved in nectar metabolism were more abundant in honey than in royal jelly as expected. However, the trend revealed a potential catalytic role for MRJP6 in clover honey and a nectar- or honey-specific role for uncharacterised protein LOC408608. The abundance of MRJP6 in manuka honey was equivalent to royal jelly suggesting a potential effect of nectar type on expression of this protein. Data are available via ProteomeXchange with identifier PXD038889.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Proteoma , Néctar de Plantas , Ácidos Graxos/análise
10.
Environ Microbiol ; 24(10): 4834-4852, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912527

RESUMO

Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.


Assuntos
Actinidia , Bacteriófagos , Actinidia/microbiologia , Antibacterianos , Bacteriófagos/genética , Cobre , Microscopia Crioeletrônica , Glicosiltransferases , Lipopolissacarídeos , Doenças das Plantas/microbiologia , Proteoma , Pseudomonas syringae/genética
11.
Front Neurosci ; 16: 858524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692428

RESUMO

Secreted amyloid precursor protein alpha (sAPPα) processed from a parent human brain protein, APP, can modulate learning and memory. It has potential for development as a therapy preventing, delaying, or even reversing Alzheimer's disease. In this study a comprehensive analysis to understand how it affects the transcriptome and proteome of the human neuron was undertaken. Human inducible pluripotent stem cell (iPSC)-derived glutamatergic neurons in culture were exposed to 1 nM sAPPα over a time course and changes in the transcriptome and proteome were identified with RNA sequencing and Sequential Window Acquisition of All THeoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS), respectively. A large subset (∼30%) of differentially expressed transcripts and proteins were functionally involved with the molecular biology of learning and memory, consistent with reported links of sAPPα to memory enhancement, as well as neurogenic, neurotrophic, and neuroprotective phenotypes in previous studies. Differentially regulated proteins included those encoded in previously identified Alzheimer's risk genes, APP processing related proteins, proteins involved in synaptogenesis, neurotransmitters, receptors, synaptic vesicle proteins, cytoskeletal proteins, proteins involved in protein and organelle trafficking, and proteins important for cell signalling, transcriptional splicing, and functions of the proteasome and lysosome. We have identified a complex set of genes affected by sAPPα, which may aid further investigation into the mechanism of how this neuroprotective protein affects memory formation and how it might be used as an Alzheimer's disease therapy.

12.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055195

RESUMO

One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)-an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra-mass spectrometry (SWATH-MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2-2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.


Assuntos
Injúria Renal Aguda/diagnóstico , Biomarcadores/metabolismo , Insuficiência Cardíaca/metabolismo , Proteômica/métodos , Injúria Renal Aguda/sangue , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Modelos Animais de Doenças , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/urina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/urina , Prognóstico , Ovinos
13.
J Mol Biol ; 433(22): 167242, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536441

RESUMO

Proper regulation of gene-expression relies on specific protein-protein interactions between a myriad of epigenetic regulators. As such, mutation of genes encoding epigenetic regulators often drive cancer and developmental disorders. Additional sex combs-like protein 1 (ASXL1) is a key example, where mutations frequently drive haematological cancers and can cause developmental disorders. It has been reported that nonsense mutations in ASXL1 promote an interaction with BRD4, another central epigenetic regulator. Here we provide a molecular mechanism for the BRD4-ASXL1 interaction, demonstrating that a motif near to common truncation breakpoints of ASXL1 contains an epitope that binds the ET domain within BRD4. Binding-studies show that this interaction is analogous to common ET-binding modes of BRD4-interactors, and that all three ASX-like protein orthologs (ASXL1-3) contain a functional ET domain-binding epitope. Crucially, we observe that BRD4-ASXL1 binding is markedly increased in the prevalent ASXL1Y591X truncation that maintains the BRD4-binding epitope, relative to full-length ASXL1 or truncated proteins that delete the epitope. Together, these results show that ASXL1 truncation enhances BRD4 recruitment to transcriptional complexes via its ET domain, which could misdirect regulatory activity of either BRD4 or ASXL1 and may inform potential therapeutic interventions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Epitopos , Mutação da Fase de Leitura , Mutação com Ganho de Função , Células HEK293 , Humanos , Complexos Multiproteicos/metabolismo , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/imunologia , Reprodutibilidade dos Testes , Fatores de Transcrição/química , Fatores de Transcrição/genética
14.
Viruses ; 13(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34372620

RESUMO

Protein modifications dynamically occur and regulate biological processes in all organisms. Towards understanding the significance of protein modifications in influenza virus infection, we performed a global mass spectrometry screen followed by bioinformatics analyses of acetylation, methylation and allysine modification in human lung epithelial cells in response to influenza A virus infection. We discovered 8 out of 10 major viral proteins and 245 out of 2280 host proteins detected to be differentially modified by three modifications in infected cells. Some of the identified proteins were modified on multiple amino acids residues and by more than one modification; the latter occurred either on different or same residues. Most of the modified residues in viral proteins were conserved across >40 subtypes of influenza A virus, and influenza B or C viruses and located on the protein surface. Importantly, many of those residues have already been determined to be critical for the influenza A virus. Similarly, many modified residues in host proteins were conserved across influenza A virus hosts like humans, birds, and pigs. Finally, host proteins undergoing the three modifications clustered in common functional networks of metabolic, cytoskeletal, and RNA processes, all of which are known to be exploited by the influenza A virus.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Interações Hospedeiro-Patógeno/fisiologia , Vírus da Influenza A/patogenicidade , Processamento de Proteína Pós-Traducional , Ácido 2-Aminoadípico/metabolismo , Células A549 , Acetilação , Animais , Biologia Computacional/métodos , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza A/genética , Influenza Humana/virologia , Espectrometria de Massas/métodos , Metilação , Orthomyxoviridae/classificação , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/virologia , Suínos
15.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672312

RESUMO

The problematic opportunistic pathogen Pseudomonas aeruginosa secretes a siderophore, pyoverdine. Pyoverdine scavenges iron needed by the bacteria for growth and for pathogenicity in a range of different infection models. PvdF, a hydroxyornithine transformylase enzyme, is essential for pyoverdine synthesis, catalysing synthesis of formylhydroxyornithine (fOHOrn) that forms part of the pyoverdine molecule and provides iron-chelating hydroxamate ligands. Using a mass spectrometry assay, we confirm that purified PvdF catalyses synthesis of fOHOrn from hydroxyornithine and formyltetrahydrofolate substrates. Site directed mutagenesis was carried out to investigate amino acid residues predicted to be required for enzymatic activity. Enzyme variants were assayed for activity in vitro and also in vivo, through measuring their ability to restore pyoverdine production to a pvdF mutant strain. Variants at two putative catalytic residues N168 and H170 greatly reduced enzymatic activity in vivo though did not abolish activity in vitro. Change of a third residue D229 abolished activity both in vivo and in vitro. A change predicted to block entry of N10-formyltetrahydrofolate (fTHF) to the active site also abolished activity both in vitro and in vivo. A co-purification assay showed that PvdF binds to an enzyme PvdA that catalyses synthesis of hydroxyornithine, with this interaction likely to increase the efficiency of fOHOrn synthesis. Our findings advance understanding of how P. aeruginosa synthesises pyoverdine, a key factor in host-pathogen interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Oxigenases de Função Mista/metabolismo , Sideróforos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/isolamento & purificação , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Oligopeptídeos/biossíntese , Mapas de Interação de Proteínas , Estabilidade Proteica , Pseudomonas aeruginosa/metabolismo
16.
Sci Rep ; 11(1): 4605, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633217

RESUMO

To identify circulating proteins predictive of acute cardiovascular disease events in the general population, we performed a proteomic screen in plasma from asymptomatic individuals. A "Discovery cohort" of 25 individuals who subsequently incurred a cardiovascular event within 3 years (median age = 70 years, 80% male) was matched to 25 controls remaining event-free for > 5 years (median age = 72 years, 80% male). Plasma proteins were assessed by data independent acquisition mass spectrometry (DIA-MS). Associations with cardiovascular events were tested using Cox regression, adjusted for the New Zealand Cardiovascular Risk Score. Concentrations of leading protein candidates were subsequently measured with ELISAs in a larger (n = 151) independent subset. In the Discovery cohort, 76 plasma proteins were robustly quantified by DIA-MS, with 8 independently associated with cardiovascular events. These included (HR = hazard ratio [95% confidence interval] above vs below median): fibrinogen alpha chain (HR = 1.84 [1.19-2.84]); alpha-2-HS-glycoprotein (also called fetuin A) (HR = 1.86 [1.19-2.93]); clusterin isoform 2 (HR = 1.59 [1.06-2.38]); fibrinogen beta chain (HR = 1.55 [1.04-2.30]); hemoglobin subunit beta (HR = 1.49 [1.04-2.15]); complement component C9 (HR = 1.62 [1.01-2.59]), fibronectin isoform 3 (HR = 0.60 [0.37-0.99]); and lipopolysaccharide-binding protein (HR = 1.58 [1.00-2.49]). The proteins for which DIA-MS and ELISA data were correlated, fibrinogen and hemoglobin, were analyzed in an Extended cohort, with broader inclusion criteria and longer time to events, in which these two proteins were not associated with incident cardiovascular events. We have identified eight candidate proteins that may independently predict cardiovascular events occurring within three years in asymptomatic, low-to-moderate risk individuals, although these appear not to predict events beyond three years.


Assuntos
Doenças Cardiovasculares/sangue , Fibrinogênio/análise , Hemoglobinas/análise , Idoso , Doenças Cardiovasculares/diagnóstico , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Espectrometria de Massas , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais
17.
Sci Rep ; 10(1): 16301, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004869

RESUMO

Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.


Assuntos
Enterococcus faecalis/ultraestrutura , Subunidades Ribossômicas Maiores/ultraestrutura , Antibacterianos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Conformação Proteica , Subunidades Ribossômicas Maiores/metabolismo
18.
J Evol Biol ; 33(12): 1783-1794, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33034086

RESUMO

Sperm velocity is a key trait that predicts the outcome of sperm competition. By promoting or impeding sperm velocity, females can control fertilization via postcopulatory cryptic female choice. In Chinook salmon, ovarian fluid (OF), which surrounds the ova, mediates sperm velocity according to male and female identity, biasing the outcome of sperm competition towards males with faster sperm. Past investigations have revealed proteome variation in OF, but the specific components of OF that differentially mediate sperm velocity have yet to be characterized. Here we use quantitative proteomics to investigate whether OF protein composition explains variation in sperm velocity and fertilization success. We found that OF proteomes from six females robustly clustered into two groups and that these groups are distinguished by the abundance of a restricted set of proteins significantly associated with sperm velocity. Exposure of sperm to OF from females in group I had faster sperm compared to sperm exposed to the OF of group II females. Overall, OF proteins that distinguished between these groups were enriched for vitellogenin and calcium ion interactions. Our findings suggest that these proteins may form the functional basis for cryptic female choice via the biochemical and physiological mediation of sperm velocity.


Assuntos
Líquido Folicular/metabolismo , Salmão/metabolismo , Espermatozoides/fisiologia , Animais , Feminino , Masculino , Proteoma
19.
J Transl Med ; 18(1): 365, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972442

RESUMO

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious and complex physical illness that affects all body systems with a multiplicity of symptoms, but key hallmarks of the disease are pervasive fatigue and 'post-exertional malaise', exacerbation after physical and/or mental activity of the intrinsic fatigue and other symptoms that can be highly debilitating and last from days to months. Although the disease can vary widely between individuals, common symptoms also include pain, cognitive deficits, sleep dysfunction, as well as immune, neurological and autonomic symptoms. Typically, it is a very isolating illness socially, carrying a stigma because of the lack of understanding of the cause and pathophysiology. METHODS: To gain insight into the pathophysiology of ME/CFS, we examined the proteomes of peripheral blood mononuclear cells (PBMCs) by SWATH-MS analysis in a small well-characterised group of patients and matched controls. A principal component analysis (PCA) was used to stratify groups based on protein abundance patterns, which clearly segregated the majority of the ME/CFS patients (9/11) from the controls. This majority subgroup of ME/CFS patients was then further compared to the control group. RESULTS: A total of 60 proteins in the ME/CFS patients were differentially expressed (P < 0.01, Log10 (Fold Change) > 0.2 and < -0.2). Comparison of the PCA selected subgroup of ME/CFS patients (9/11) with controls increased the number of proteins differentially expressed to 99. Of particular relevance to the core symptoms of fatigue and post-exertional malaise experienced in ME/CFS, a proportion of the identified proteins in the ME/CFS groups were involved in mitochondrial function, oxidative phosphorylation, electron transport chain complexes, and redox regulation. A significant number were also involved in previously implicated disturbances in ME/CFS, such as the immune inflammatory response, DNA methylation, apoptosis and proteasome activation. CONCLUSIONS: The results from this study support a model of deficient ATP production in ME/CFS, compensated for by upregulation of immediate pathways upstream of Complex V that would suggest an elevation of oxidative stress. This study and others have found evidence of a distinct pathology in ME/CFS that holds promise for developing diagnostic biomarkers.


Assuntos
Síndrome de Fadiga Crônica , Metilação de DNA , Síndrome de Fadiga Crônica/genética , Humanos , Leucócitos Mononucleares , Mitocôndrias , Proteoma
20.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882852

RESUMO

High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, ß-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...