Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256734

RESUMO

The present experiment addressed the effects of foliar sprays of different iron (Fe) concentrations (mg L-1), i.e., 2.8 (Fe I), 4.2 (Fe II), and 5.6 (Fe III), as well as an ionic derivative of salicylic acid (iSal) in two doses (10 and 20 mg L-1) on lettuce yield, chlorophyll and carotenoids content, and fluorescence parameters. Chemicals were used individually and in combinations two times, 23 and 30 days after the plants were transplanted. This experiment was carried out in a climate chamber. The Fe and iSal applications generally (except Fe I iSal, 10 mg L-1; Fe I iSal, 20 mg L-1; and Fe III iSal, 20 mg L-1) did not influence the fresh and dry matter content. The concentration of chlorophylls and carotenoids was reduced for all treatments in comparison to the control (without spraying). The Fe content in leaves was promoted in the Fe-treated plants (+70% for Fe III + iSal, 10 mg L-1, and Fe I). The iSal treatment promoted the Mn content. For most combinations, the Zn and Cu accumulations, as well as the fluorescence parameters, decreased after the foliar spray applications. Overall, our study revealed the effectiveness of Fe-DTPA chelate, but not iSal, in increasing the Fe content of lettuce grown in soilless cultivation systems.

2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498881

RESUMO

Microgreens are foods with high nutritional value, which can be further enhanced with biofortification. Crop biofortification involves increasing the accumulation of target nutrients in edible plant tissues through fertilization or other factors. The purpose of the present study was to evaluate the potential for biofortification of some vegetable microgreens through iron (Fe) enrichment. The effect of nutrient solution supplemented with iron chelate (1.5, 3.0 mg/L) on the plant's growth and mineral concentration of purple kohlrabi, radish, pea, and spinach microgreens was studied. Increasing the concentration of Fe in the medium increased the Fe content in the leaves of the species under study, except for radish. Significant interactions were observed between Fe and other microelements (Mn, Zn, and Cu) content in the shoots. With the increase in the intensity of supplementation with Fe, regardless of the species, the uptake of zinc and copper decreased. However, the species examined suggested that the response to Fe enrichment was species-specific. The application of Fe didn't influence plant height or fresh and dry weight. The chlorophyll content index (CCI) was different among species. With increasing fertilisation intensity, a reduction in CCI only in peas resulted. A higher dose of iron in the medium increased the fluorescence yield of spinach and pea microgreens. In conclusion, the tested species, especially spinach and pea, grown in soilless systems are good targets to produce high-quality Fe biofortified microgreens.


Assuntos
Biofortificação , Ferro , Ferro/análise , Folhas de Planta , Valor Nutritivo , Verduras
3.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056846

RESUMO

The main focus of the study was to determine the content of phenolic acids, flavonoids, and organic acids in the flowers of Tagetes patula 'Petite Gold' and 'Petite Orange'. The growth of the plants was assessed depending on the cultivation conditions. The above plants were illuminated with white light, whereas the 'Petite Gold' ones with white light enhanced with blue or red light. Both cultivars grew in a two-level-mineral compounds organic substrate. The research showed that the French marigold flowers were rich in phenolic compounds and organic acids. The 'Petite Gold' flowers had more bioactive compounds compared with the 'Petite Orange' flowers. Three flavonoids, 10 phenolic acids and seven organic acids were found in the 'Petite Gold' flowers. The artificial lighting used during the cultivation of the plants showed diversified influence on the content of organic compounds in their flowers. The measurements of the plants' morphological traits and the number of inflorescences showed that illumination with red light resulted in a better effect. Large plants with numerous inflorescences grew in the substrate with a lower content of nutrients.


Assuntos
Ácidos/análise , Flores/crescimento & desenvolvimento , Luz , Compostos Orgânicos/análise , Fenóis/análise , Extratos Vegetais/análise , Tagetes/química , Cor , Flores/metabolismo , Flores/efeitos da radiação , Extratos Vegetais/efeitos da radiação
4.
RSC Adv ; 11(44): 27530-27540, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35480698

RESUMO

The use of highly efficient methods and natural raw materials in syntheses of new biologically active substances addresses the current challenges in this area: ensuring the highest possible efficacy at low concentrations and reducing negative environmental impact. In the present study, we applied this strategy to obtain a new group of ionic liquids containing the indole-3-acetate anion, which is a well-known plant growth hormone, and a cation derived from a cinchona alkaloid - quinine or quinidine. A comparison of the derivatization kinetics of both alkaloids was also carried out, and the use of a quaternary quinidine derivative as a source of biologically active ionic liquids is described here for the first time. The structures of the obtained compounds were fully confirmed based on spectral methods. According to analyses of the effects of the obtained compounds on the growth and development of lettuce plants (Lactuca sativa L.), the ionic liquids obtained with indole-3-acetate anions exhibited activity at a concentration of 0.5 mg dm-3, and the length of the alkyl substituent in the alkaloid-derived cation or the chirality of this cation is crucial in determining the biological activity of the compound. In the cases of several salts containing the 1-alkylquininium cation, we recorded significant, beneficial changes in micronutrient content, which directly translated into plant nutritional value, while no signs of phytotoxicity were observed. Analyses of relevant physicochemical properties (e.g., with differential scanning calorimetry, thermogravimetric analysis and solubility analysis) as well as microbial toxicity tests were also performed to evaluate the environmental impacts of the products. The promising results of our study indicate significant potential for application of these new ionic liquids derived from cinchona alkaloids.

5.
PLoS One ; 14(9): e0221514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509549

RESUMO

Trees have multi-aspect influence on the microclimate in urbanised areas. Therefore, it is important to investigate the biotic and abiotic factors affecting their health. The aim of the conducted study was to assess the chemical composition of soils and the nutritional status of lime and horse chestnut trees in selected sites and the influence of these factors on the condition and health of these tree species in urbanised areas. The research was conducted on selected trees (n = 643) growing in different parts of the city. The soils and plants were analysed for the content of macro- and microelements, sodium and heavy metals. A canonical variation analysis (CVA)-the canonical variant of Fisher's linear discriminant analysis (LDA) was used to construct the model. The CVA enabled the creation of 4 CCA models. The research showed that in general, the soil in all the sites of lime and horse chestnut trees was alkalised-at the same time it was characterised by low salinity. Despite the alkaline soil the statistical analysis showed a positive correlation between the content of manganese in the lime leaves and the deterioration of their health. In spite of that due to the satisfactory health status and condition of trees in most locations temporary guide values of nutrients were proposed for trees growing in urbanised areas. The following temporary guide values of nutrients were proposed for the horse chestnut trees (% d. m.): N 2.38%-4.71%, P 0.24%-0.46%, K 1.13%-2.31%, Ca 1.05%-2.12%, Mg 0.16%-0.42%, S 0.12%-0.23%; Fe 89.8-198.8, Zn 17.6-33.1, Cu 7.36-19.61 (mg kg-1 d. m.). The following temporary guide values were proposed for the small-leaved lime-trees (% d. m.): N 2.45%-3.22%, P 0.27%-0.42%, K 1.52%-2.86%, Ca 1.43%-2.02%, Mg 0.19%-0.35%, S 0.19%-0.25%; Fe 137.6-174.3, Zn 20.2-23.8, Cu 8.36-9.79 (mg kg-1 d. m.).


Assuntos
Aesculus/química , Solo/química , Tilia/química , Análise Discriminante , Monitoramento Ambiental , Metais Pesados/análise , Micronutrientes/análise , Parques Recreativos , Folhas de Planta/química , Sódio/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-28122476

RESUMO

This study evaluated the effect of increasing manganese (Mn) nutrition on the content of antioxidative compounds such as vitamin C, lycopene and polyphenols, and the antioxidant activity of tomato (Lycopersicon esculentum Mill., cvs 'Alboney F1' and 'Emotion F1') fruit. Plants were grown in rockwool using a nutrient solution with the following content of Mn (mg dm-3): 0.0, 0.3, 0.6, 1.2, 2.4, 4.8, 9.6 and 19.2. The level of vitamin C and lycopene decreased with the increasing Mn nutrition. Since the colour of fruits was correlated with the change in carotenoid content, the decrease in lycopene content promoted the reduction of redness and increase of yellowness of fruits. However, total polyphenol content and antioxidant activity significantly increased when plant were exposed to toxic levels of Mn. Observed changes could be the result of the oxidative stress induced by high concentrations of Mn. Polyphenolic compounds play a crucial role in the plant's response to Mn stress and affect predominantly the total antioxidant properties of fruits, which could be used as a source of phenolics. Moreover, total phenolic content measurement, as an easy and inexpensive method, could be used as an indicator of Mn-induced stress in fruits of tomato.


Assuntos
Antioxidantes/análise , Ácido Ascórbico/análise , Carotenoides/análise , Frutas/química , Manganês/análise , Manganês/química , Fenóis/análise , Solanum lycopersicum/química , Antioxidantes/química , Ácido Ascórbico/química , Carotenoides/química , Licopeno , Fenóis/química , Soluções
7.
Artigo em Inglês | MEDLINE | ID: mdl-26414298

RESUMO

The paper investigates the migration of the acrylamide monomer (AMD) to lettuce chosen as a test plant growing in an organic medium (peat substrate). Polyacrylamide (PAM)-based flocculant added to the growing medium contained no more than 1000 mg kg(-1) of AMD. Plants were grown with varied doses of PAM preparation (0.5-3.0 mg dm(-3) of peat substrate) to compare the results with the control sample. The determination of AMD content, chlorophyll content, weight of the lettuce head, and also analysis of macro- and micro-elements in lyophilised test material was made under the same analytical conditions. The results showed that lettuce plants absorb AMD to the leaves from the peat substrate. The AMD uptake has a negative impact on the growth of lettuce. It reduces the average fresh weight of heads and destabilises the mineral composition of the plant. Therefore, concern related to the transfer risk of the residual AMD from sludge used for organic fertilisation of edible plants still remains a crucial question from a food and consumer safety point of view. To ensure consumer safety, the fate of the AMD following the application of PAM to cropland should be carefully monitored in the whole food chain.


Assuntos
Acrilamida/isolamento & purificação , Resinas Acrílicas/isolamento & purificação , Lactuca/química , Folhas de Planta/química , Poluentes do Solo/isolamento & purificação , Acrilamida/metabolismo , Resinas Acrílicas/metabolismo , Clorofila/análise , Clorofila/biossíntese , Cromatografia Líquida de Alta Pressão , Floculação , Inocuidade dos Alimentos , Humanos , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/metabolismo
8.
Plant Physiol Biochem ; 96: 180-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26285179

RESUMO

The aim of experiments was to assess the efficiency of choline-stabilized orthosilicic acid (ch-OSA; complex of orthosilicic acid with choline and a bioavailable source of silicon) application under increasing manganese (Mn) stress on the micronutritional composition and yielding of tomato (Solanum lycopersicum L. cvs. 'Alboney F1' and 'Emotion F1'). Plants were grown in rockwool with the application of a nutrient solution varied the Mn concentrations (in mg dm(-3)): 9.6 and 19.2 which cause strong oxidative stress of plants comparing with optimal concentration of that microelement in nutrient solution. The effect of ch-OSA application (at Si concentration of 0.3 mg dm(-3) nutrient solution) was investigated at both Mn-levels. Increasing Mn stress modified the concentration of microelements and silicon (Si) in tomato leaves. Application of ch-OSA also influenced the concentration of nutrients, but the determined changes were generally multidirectional and varied depending on Mn-level and cultivar. Under the increasing Mn stress a significant downward trend was observed for the mean concentration of Fe (in both cultivars) in fruits--but changes of Mn, Zn and Cu were varied depend on cultivar. In the case of cv. 'Alboney F1' ch-OSA application caused an increase the mean concentrations of Fe, Zn and Cu, while in the case of cv. 'Emotion F1' the reduction of mean concentrations of Zn and Cu was recorded. Ch-OSA treatment did not influence on the Mn concentrations in fruits. A beneficial role of ch-OSA was also found in photosynthesis activity. This was especially valid for lower levels of Mn. Application of ch-OSA improved significantly the marketable yield of tomato under stress by a low Mn level.


Assuntos
Colina/química , Manganês/metabolismo , Fotossíntese , Ácido Silícico/farmacologia , Silício/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Ácido Silícico/química , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...