Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia Open ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36896626

RESUMO

Growing concerns over rigor and reproducibility of preclinical studies, including consistency across laboratories and translation to clinical populations, have triggered efforts to harmonize methodologies. This includes the first set of preclinical common data elements (CDEs) for epilepsy research studies, as well as Case Report Forms (CRFs) for widespread use in epilepsy research. The General Pharmacology Working Group of the ILAE/AES Task Force (TASK3-WG1A) has continued in this effort by adapting and refining CDEs/CRFs to address specific study design areas as they relate to preclinical drug screening: general pharmacology, pharmacokinetics (PK) and pharmacodynamics (PD), and tolerability. This work has expanded general pharmacology studies to include dose records, PK/PD, tolerability, and elements of rigor and reproducibility. Tolerability testing CRFs included rotarod and Irwin/Functional Observation Battery (FOB) assays. The material provided in the form of CRFs can be delivered for widespread use within the epilepsy research community.

2.
Epilepsia ; 59(3): 724-735, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29360159

RESUMO

OBJECTIVE: We previously demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate subtype 2 (mGlu2 ) receptors have potential synergistic interactions with the antiseizure drug levetiracetam (LEV). The present study utilizes isobolographic analysis to evaluate the combined administration of JNJ-46356479, a selective and potent mGlu2 PAM, with LEV as well as sodium valproate (VPA) and lamotrigine (LTG). METHODS: The anticonvulsant efficacy of JNJ-46356479 was evaluated in the 6-Hz model of psychomotor seizures in mice. JNJ-46356479 was administered in combination with LEV using 3 fixed dose-ratio treatment groups in the mouse 6-Hz (44-mA) seizure test. The combination of JNJ-46356479 with LEV was also evaluated in the mouse corneal kindling model. The potential interactions of JNJ-46356479 with the antiseizure drugs VPA and LTG were also evaluated using fixed dose-ratio combinations. Plasma levels were obtained for analysis of potential pharmacokinetic interactions for each combination studied in the mouse 6-Hz model. RESULTS: JNJ-46356479 was active in the 6-Hz model at both 32-mA and 44-mA stimulus intensities (median effective dose = 2.8 and 10.2 mg/kg, respectively). Using 1:1, 1:3, and 3:1 fixed dose-ratio combinations (LEV:JNJ-46356479), coadministration was significantly more potent than predicted for additive effects, and plasma levels suggest this synergism was not due to pharmacokinetic interactions. Studies in kindled mice further demonstrate the positive pharmacodynamic interaction of LEV with JNJ-46356479. Using 1:1 dose-ratio combinations of JNJ-46356479 with either VPA or LTG, there were no significant differences observed for coadministration. SIGNIFICANCE: These studies demonstrate a synergistic interaction of JNJ-46356479 with LEV, whereas no such effect occurred for JNJ-46356479 with either VPA or LTG. The synergy seems therefore to be specific to LEV, and the combination LEV/mGlu2 PAM has the potential to result in a rational polypharmacy approach to treat patients with refractory epilepsy, once it has been confirmed in clinical studies.


Assuntos
Anticonvulsivantes/administração & dosagem , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Piracetam/análogos & derivados , Receptores de Glutamato Metabotrópico/agonistas , Convulsões/tratamento farmacológico , Regulação Alostérica , Animais , Anticonvulsivantes/sangue , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Agonistas de Aminoácidos Excitatórios/sangue , Levetiracetam , Masculino , Camundongos , Piracetam/administração & dosagem , Piracetam/sangue , Receptores de Glutamato Metabotrópico/fisiologia , Convulsões/sangue
3.
Neurochem Res ; 42(7): 1939-1948, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478594

RESUMO

Cannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs). Initial studies appear to demonstrate that CBD preparations may be a useful treatment for pharmacoresistant epilepsy. The National Institute of Neurological Disorders and Stroke (NINDS) funded Epilepsy Therapy Screening Program (ETSP) investigated CBD in a battery of seizure models using a refocused screening protocol aimed at identifying pharmacotherapies to address the unmet need in pharmacoresistant epilepsy. Applying this new screening workflow, CBD was investigated in mouse 6 Hz 44 mA, maximal electroshock (MES), corneal kindling models and rat MES and lamotrigine-resistant amygdala kindling models. Following intraperitoneal (i.p.) pretreatment, CBD produced dose-dependent protection in the acute seizure models; mouse 6 Hz 44 mA (ED50 164 mg/kg), mouse MES (ED50 83.5 mg/kg) and rat MES (ED50 88.9 mg/kg). In chronic models, CBD produced dose-dependent protection in the corneal kindled mouse (ED50 119 mg/kg) but CBD (up to 300 mg/kg) was not protective in the lamotrigine-resistant amygdala kindled rat. Motor impairment assessed in conjunction with the acute seizure models showed that CBD exerted seizure protection at non-impairing doses. The ETSP investigation demonstrates that CBD exhibits anti-seizure properties in acute seizure models and the corneal kindled mouse. However, further preclinical and clinical studies are needed to determine the potential for CBD to address the unmet needs in pharmacoresistant epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Canabidiol/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Animais , Canabidiol/farmacologia , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Epilepsia/induzido quimicamente , Epilepsia/fisiopatologia , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Lamotrigina , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Triazinas/farmacologia , Triazinas/uso terapêutico
4.
Neurochem Res ; 42(7): 1894-1903, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28462454

RESUMO

For over 40 years, the National Institute of Neurological Disorders and Stroke/National Institutes of Health-funded Anticonvulsant Screening Program has provided a preclinical screening service for participants world-wide that helped identify/characterize new antiseizure compounds, a number of which advanced to the market for the treatment of epilepsy. The newly-renamed Epilepsy Therapy Screening Program (ETSP) has a refocused mission to identify novel agents which will help address the considerable remaining unmet medical needs in epilepsy. These include identifying antiseizure agents for treatment-resistant epilepsy, as well as anti-epileptogenic agents that will prevent the development of epilepsy or disease-modifying agents that will ameliorate or even cure established epilepsy and its comorbidities. This manuscript provides an overview of the ETSP's efforts aimed at identifying the next generation of therapeutic agents to further reduce the suffering from and burden of epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/tendências , Epilepsia/tratamento farmacológico , National Institute of Neurological Disorders and Stroke (USA)/tendências , Animais , Ensaios Clínicos como Assunto/métodos , Bases de Dados Factuais/tendências , Avaliação Pré-Clínica de Medicamentos/métodos , Epilepsia/epidemiologia , Humanos , Estados Unidos/epidemiologia
5.
Neurochem Res ; 42(7): 1983-1994, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382595

RESUMO

The potential clinical utility of galanin peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia. In addition to possessing potent anticonvulsant efficacy, galanin analogs are analgesic in various assays. The purpose of these studies was to evaluate the lead galanin receptor type 2 (GalR2)-preferring analog, NAX 810-2, in various pain assays, as well as determine any potential for insulin inhibition, growth hormone stimulation, and cognitive impairment. NAX 810-2 was evaluated in mouse (carrageenan, formalin, tail flick, plantar incision) and rat pain models (partial sciatic nerve ligation). NAX 810-2 dose-dependently increased paw withdrawal latency following plantar administration of carrageenan (ED50 4.7 mg/kg). At a dose of 8 mg/kg, NAX 810-2 significantly attenuated nociceptive behaviors following plantar administration of formalin, and this was observed for both phase I (acute) and phase II (inflammatory) components of the formalin behavioral response. NAX-810-2 was active at higher doses in the mouse tail flick model (ED50 20.2 mg/kg) and similarly, reduced mechanical allodynia following plantar incision in mice at a dose of 24 mg/kg. NAX 810-2 also reduced mechanical allodynia in the partial sciatic nerve ligation model at a dose of 4 mg/kg. In addition, NAX 810-2 did not impair insulin secretion at doses of 2.5 and 8 mg/kg (acutely) or at a dose of 8 mg/kg given daily for 5 days. Similarly, 8 mg/kg (twice daily, 5 days) of NAX 810-2 did not increase growth hormone levels. These results demonstrate that NAX 810-2 possesses a favorable pre-clinical profile as a novel and first-in-class analgesic.


Assuntos
Analgésicos/metabolismo , Analgésicos/uso terapêutico , Galanina/análogos & derivados , Dor/tratamento farmacológico , Receptor Tipo 2 de Galanina/metabolismo , Analgésicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Galanina/metabolismo , Galanina/farmacologia , Galanina/uso terapêutico , Masculino , Camundongos , Dor/patologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
6.
Epilepsia ; 58(3): 484-493, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28166368

RESUMO

OBJECTIVE: The metabotropic glutamate receptor subtype 2 (mGlu2 ) possesses both orthosteric and allosteric modulatory sites, are expressed in the frontal cortex and limbic structures, and can affect excitatory synaptic transmission. Therefore, mGlu2 is a potential therapeutic target in the treatment of epilepsy. The present study seeks to evaluate the anticonvulsant potential of mGlu2 -acting compounds. METHODS: The anticonvulsant efficacy of two selective mGlu2 -positive allosteric modulators (PAMs) (JNJ-42153605 and JNJ-40411813/ADX71149) and one mGlu2/3 receptor agonist (LY404039) were evaluated alone and in combination with the antiseizure drug levetiracetam (LEV) in the mouse 6 Hz model. RESULTS: In the 6 Hz (32 mA stimulus intensity) model, median effective dose (ED50 ) values were determined for JNJ-42153605 (3.8 mg/kg), JNJ-40411813 (12.2 mg/kg), and LY404039 (10.9 mg/kg). At the 44 mA stimulus intensity, ED50 values were determined for JNJ-42153605 (5.9 mg/kg), JNJ-40411813 (21.0 mg/kg), LY404039 (14.1 mg/kg), and LEV (345 mg/kg). In addition, subprotective doses of each mGlu2 -acting compound, administered in combination with various doses of LEV, were able to shift the 6 Hz 44 mA ED50 for LEV by >25-fold. When JNJ-42153605 was administered at varying doses in combination with a single dose of LEV (10 mg/kg), the potency of JNJ-42153605 was increased 3.7-fold. Similarly, when a moderately effective dose of LEV (350 mg/kg) was administered in combination with varying doses of JNJ-40411813, the potency of JNJ-40411813 was increased approximately 14-fold. Plasma levels of JNJ-40411813 and LEV were not different when administered alone or in combination, suggesting that increases in potency are not due to pharmacokinetic effects. SIGNIFICANCE: These studies suggest a potential positive pharmacodynamic effect of mGlu2 -acting compounds in combination with LEV. If this effect is translated in a clinical setting, it can support a rational polypharmacy concept in treatment of epilepsy patients.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia Parcial Complexa/tratamento farmacológico , Fármacos Atuantes sobre Aminoácidos Excitatórios/uso terapêutico , Piracetam/análogos & derivados , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Biofísica , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Óxidos S-Cíclicos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Epilepsia Parcial Complexa/etiologia , Levetiracetam , Masculino , Camundongos , Piracetam/uso terapêutico , Piridinas/uso terapêutico , Teste de Desempenho do Rota-Rod , Comportamento Estereotipado/fisiologia , Triazinas/uso terapêutico
7.
Epilepsia ; 58(2): 239-246, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28098336

RESUMO

OBJECTIVE: Potential clinical utility of galanin or peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia due to galanin receptor subtype 1 (GalR1) activation. NAX 810-2, a galanin receptor subtype 2 (GalR2)-preferring galanin analog, possesses 15-fold greater affinity for GalR2 over GalR1 and protects against seizures in the mouse 6 Hz, corneal kindling, and Frings audiogenic seizure models. The purpose of these studies was to further evaluate the preclinical efficacy and pharmacokinetics of NAX 810-2 in mice. METHODS: NAX 810-2 was administered by intravenous (i.v.; tail vein, bolus) injection to fully kindled (corneal kindling assay) or naive CF-1 mice (6 Hz assay and pharmacokinetic studies). Plasma NAX 810-2 levels were determined from trunk blood samples. NAX 810-2 was also added to human plasma at various concentrations for determination of plasma protein binding. RESULTS: In the mouse corneal kindling model, NAX 810-2 dose-dependently blocked seizures following intravenous administration (median effective dose [ED50 ], 0.5 mg/kg). In the mouse 6 Hz (32 mA) seizure model, it was demonstrated that NAX 810-2 dose-dependently blocked seizures following bolus administration (0.375-1.5 mg/kg, i.v.; ED50 , 0.7 mg/kg), with a time-to-peak effect of 0.5 h posttreatment. Motor impairment was observed at 1.5 mg/kg, i.v., whereas one-half of this dose, 0.75 mg/kg, i.v., was maximally effective in the 6 Hz test. Plasma levels of NAX 810-2 show linear pharmacokinetics following intravenous administration and a half-life of 1.2 h. Functional agonist activity studies demonstrate that NAX 810-2 effectively activates GalR2 at therapeutic concentrations. SIGNIFICANCE: These studies further suggest the potential utility of NAX 810-2 as a novel therapy for epilepsy.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Receptor Tipo 2 de Galanina/química , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Área Sob a Curva , Córnea/inervação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica/efeitos adversos , Galanina/análogos & derivados , Galanina/farmacocinética , Galanina/uso terapêutico , Injeções Intravenosas , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/etiologia , Ligação Proteica/efeitos dos fármacos , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/antagonistas & inibidores , Convulsões/complicações , Convulsões/etiologia , Fatores de Tempo
8.
J Pharmacol Exp Ther ; 352(1): 185-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25347995

RESUMO

There are ongoing efforts to develop pain therapeutics with novel mechanisms of action that avoid common side effects associated with other analgesics. The anticonvulsant neuropeptide galanin is a potent regulator of neuronal excitability and has a well established role in pain modulation, making it a potential target for novel therapies. Our previous efforts focused on improving blood-brain-barrier penetration and enhancing the metabolic stability of galanin analogs to protect against seizures. More recently, we designed peripherally acting galanin analogs that reduce pain-related behaviors by acting in the periphery and exhibit preferential binding toward galanin receptor (GalR)2 over GalR1. In this study, we report preclinical studies of a monodisperse oligoethylene glycol-containing galanin analog, NAX 409-9 (previously reported as GalR2-dPEG24), in rodent analgesic and safety models. Results obtained with NAX 409-9 in these tests were compared with the representative analgesics gabapentin, ibuprofen, acetylsalicylic acid, acetaminophen, and morphine. In mice that received intraplantar carrageenan, NAX 409-9 increased paw withdrawal latency with an ED50 of 6.6 mg/kg i.p. NAX 409-9 also increased the paw withdrawal threshold to mechanical stimulation following partial sciatic nerve ligation in rats (2 mg/kg). Conversely, NAX 409-9 had no effect in the tail flick or hot plate assays (up to 24 mg/kg). Importantly, NAX 409-9 did not negatively affect gastrointestinal motility (4-20 mg/kg), respiratory rate (40-80 mg/kg), or bleed time (20 mg/kg). These studies illustrate that this nonbrain-penetrating galanin analog reduces pain behaviors in several models and does not produce some of the dose-limiting toxicities associated with other analgesics.


Assuntos
Dor Aguda/tratamento farmacológico , Galanina/análogos & derivados , Galanina/farmacologia , Neuralgia/tratamento farmacológico , Sistema Nervoso Periférico/efeitos dos fármacos , Receptor Tipo 2 de Galanina/metabolismo , Dor Aguda/metabolismo , Sequência de Aminoácidos , Analgésicos/efeitos adversos , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Tempo de Sangramento , Carragenina/efeitos adversos , Modelos Animais de Doenças , Galanina/efeitos adversos , Galanina/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Neuralgia/metabolismo , Ratos
9.
Epilepsy Res ; 108(1): 98-108, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24252685

RESUMO

Infantile spasms are seizures manifesting in infantile epileptic encephalopathies that are associated with poor epilepsy and cognitive outcomes. The current therapies are not always effective or are associated with serious side effects. Early cessation of spasms has been proposed to improve long-term outcomes. To identify new therapies for infantile spasms with rapid suppression of spasms, we are using the multiple-hit rat model of infantile spasms, which is a model of refractory infantile spasms. Here, we are testing the efficacy and tolerability of a single dose of the galanin receptor 1 preferring analog, NAX 5055, in the multiple-hit model of spasms. To induce the model, postnatal day 3 (PN3) male Sprague-Dawley rats underwent right intracerebral infusions of doxorubicin and lipopolysaccharide; p-chlorophenylalanine was then injected intraperitoneally (i.p.) at PN5. After the onset of spasms at PN4, 11-14 rats/group were injected i.p. with either NAX 5055 (0.5, 1, 2, or 4mg/kg) or vehicle. Video monitoring for spasms included a 1h pre-injection period, followed by 5h of recording post-injection, and two 2h sessions on PN5. The study was conducted in a randomized, blinded manner. Neurodevelopmental reflexes were assessed daily as well as at 2h after injection. Respiratory function, heart rate, pulse distension, oximetry and blood glucose were measured 4h after injection. The relative expression of GalR1 and GalR2 mRNA over ß-actin in the cerebral cortex and hippocampus was determined with real time reverse transcription polymerase chain reaction. There was no acute effect of NAX 5055 on spasm frequency after the single dose of NAX 5055 (n=11-13 rats/group, following exclusions). Neurodevelopmental reflexes, vital signs, blood glucose measured 4h post-injection, and survival were not affected. A reduction in pulse and breath distention of unclear clinical significance was observed with the 7mg/kg NAX 5055 dose. GalR1 mRNA was present in the cerebral cortex and hippocampus of PN4 and adult rats. The hippocampal - but not the cortical - GalR1 mRNA expression was significantly lower in PN4 pups than in adults. GalR1 mRNA was also at least 20 times less abundant in the PN4 cortex than GalR2 mRNA. In conclusion, a single dose of NAX 5055 has no acute efficacy on spasms or toxicity in the multiple hit rat model of medically refractory infantile spasms. Our findings cannot exclude the possibility that repetitive NAX 5055 administration may show efficacy on spasms. The higher expression of GalR2 in the PN4 cortex suggests that GalR2-preferring analogs may be of interest to test for efficacy on spasms.


Assuntos
Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Galanina/análogos & derivados , Galanina/uso terapêutico , Animais , Animais Recém-Nascidos , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Espasmo/tratamento farmacológico , Espasmo/fisiopatologia , Resultado do Tratamento
10.
J Med Chem ; 56(22): 9019-30, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24205976

RESUMO

Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such "neurostabilizers" have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4-9, 10a-i, 11a, 11b, 12) and evaluated their anticonvulsant activity. Thus, we identified promising sulfamide 4 (JNJ-26489112) and explored its pharmacological properties. Compound 4 exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically induced, and chemically induced seizures. Mechanistically, 4 inhibited voltage-gated Na(+) channels and N-type Ca(2+) channels and was effective as a K(+) channel opener. The anticonvulsant profile of 4 suggests that it may be useful for treating multiple forms of epilepsy (generalized tonic-clonic, complex partial, absence seizures), including refractory (or pharmacoresistant) epilepsy, at dose levels that confer a good safety margin. On the basis of its pharmacology and other favorable characteristics, 4 was advanced into human clinical studies.


Assuntos
Amidas/química , Amidas/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Dioxanos/química , Dioxanos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Absorção , Amidas/farmacocinética , Amidas/uso terapêutico , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Dioxanos/farmacocinética , Dioxanos/uso terapêutico , Cães , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Epilepsia/tratamento farmacológico , Feminino , Humanos , Masculino , Camundongos , Ratos , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
11.
Bioorg Med Chem ; 21(1): 303-10, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176753

RESUMO

Hydrocarbon stapling is an effective strategy to stabilize the helical conformation of bioactive peptides. Here we describe application of stapling to anticonvulsant neuropeptides, galanin (GAL) and neuropeptide Y (NPY), that are implicated in modulating seizures in the brain. Dicarba bridges were rationally introduced into minimized analogs of GAL and NPY resulting in increased α-helical content, in vitro metabolic stability and n-octanol/water partitioning coefficient (logD). The stapled analogs retained agonist activities towards their respective receptors and suppressed seizures in a mouse model of epilepsy.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Galanina/análogos & derivados , Galanina/uso terapêutico , Neuropeptídeo Y/análogos & derivados , Neuropeptídeo Y/uso terapêutico , Sequência de Aminoácidos , Animais , Anticonvulsivantes/metabolismo , Ciclização , Estabilidade de Medicamentos , Galanina/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Neuropeptídeo Y/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos
12.
Mol Pharm ; 10(2): 574-85, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23259957

RESUMO

Delivery of neuropeptides into the central and/or peripheral nervous systems supports development of novel neurotherapeutics for the treatment of pain, epilepsy and other neurological diseases. Our previous work showed that the combination of lipidization and cationization applied to anticonvulsant neuropeptides galanin (GAL) and neuropeptide Y (NPY) improved their penetration across the blood-brain barrier yielding potent antiepileptic lead compounds, such as Gal-B2 (NAX 5055) or NPY-B2. To dissect peripheral and central actions of anticonvulsant neuropeptides, we rationally designed, synthesized and characterized GAL and NPY analogues containing monodisperse (discrete) oligoethyleneglycol-lysine (dPEG-Lys). The dPEGylated analogues Gal-B2-dPEG(24), Gal-R2-dPEG(24) and NPY-dPEG(24) displayed analgesic activities following systemic administration, while avoiding penetration into the brain. Gal-B2-dPEG(24) was synthesized by a stepwise deprotection of orthogonal 4-methoxytrityl and allyloxycarbonyl groups, and subsequent on-resin conjugations of dPEG(24) and palmitic acids, respectively. All the dPEGylated analogues exhibited substantially decreased hydrophobicity (expressed as logD values), increased in vitro serum stabilities and pronounced analgesia in the formalin and carrageenan inflammatory pain assays following systemic administration, while lacking apparent antiseizure activities. These results suggest that discrete PEGylation of neuropeptides offers an attractive strategy for developing neurotherapeutics with restricted penetration into the central nervous system.


Assuntos
Aminoácidos/química , Analgésicos/química , Anticonvulsivantes/química , Galanina/análogos & derivados , Neuropeptídeo Y/análogos & derivados , Animais , Anticonvulsivantes/farmacologia , Galanina/química , Masculino , Camundongos , Neuropeptídeo Y/química , Nociceptividade/efeitos dos fármacos
13.
Neurotherapeutics ; 6(2): 372-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19332332

RESUMO

The endogenous neuropeptide galanin and its associated receptors galanin receptor 1 and galanin receptor 2 are highly localized in brain limbic structures and play an important role in the control of seizures in animal epilepsy models. As such, galanin receptors provide an attractive target for the development of novel anticonvulsant drugs. Our efforts to engineer galanin analogs that can penetrate the blood-brain-barrier and suppress seizures, yielded NAX 5055 (Gal-B2), a systemically-active analog that maintains low nanomolar affinity for galanin receptors and displays a potent anticonvulsant activity. In this report, we show that NAX 5055 is active in three models of epilepsy: 1) the Frings audiogenic seizure-susceptible mouse, 2) the mouse corneal kindling model of partial epilepsy, and 3) the 6 Hz model of pharmacoresistant epilepsy. NAX 5055 was not active in the traditional maximal electroshock and subcutaneous pentylenetetrazol seizure models. Unlike most antiepileptic drugs, NAX 5055 showed high potency in the 6 Hz model of epilepsy across all three different stimulation currents; i.e., 22, 32 and 44 mA, suggesting a potential use in the treatment of pharmacoresistant epilepsy. Furthermore, NAX 5055 was found to be biologically active after intravenous, intraperitoneal, and subcutaneous administration, and efficacy was associated with a linear pharmacokinetic profile. The results of the present investigation suggest that NAX 5055 is a first-in-class neurotherapeutic for the treatment of epilepsy in patients refractory to currently approved antiepileptic drugs.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Galanina/análogos & derivados , Animais , Anticonvulsivantes/química , Modelos Animais de Doenças , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos
14.
Biochemistry ; 45(23): 7404-14, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16752929

RESUMO

MuO-conotoxin MrVIB is a blocker of voltage-gated sodium channels, including TTX-sensitive and -resistant subtypes. A comprehensive characterization of this peptide has been hampered by the lack of sufficient synthetic material. Here, we describe the successful chemical synthesis and oxidative folding of MrVIB that has made an investigation of the pharmacological properties and therapeutic potential of the peptide feasible. We show for the first time that synthetic MrVIB blocks rat NaV1.8 sodium channels and has potent and long-lasting local anesthetic effects when tested in two pain assays in rats. Furthermore, MrVIB can block propagation of action potentials in A- and C-fibers in sciatic nerve as well as skeletal muscle in isolated preparations from rat. Our work provides the first example of analgesia produced by a conotoxin that blocks sodium channels. The emerging diversity of antinociceptive mechanisms targeted by different classes of conotoxins is discussed.


Assuntos
Analgésicos/farmacologia , Conotoxinas/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Tetrodotoxina/farmacologia , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Conotoxinas/química , Masculino , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.8 , Ratos , Ratos Sprague-Dawley , Canais de Sódio
15.
Dev Neurosci ; 27(5): 321-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16137990

RESUMO

The gene responsible for the audiogenic seizure (AGS) phenotype in Frings mice, which was identified and originally designated Mass1, is now referred to as Mgr1. Although the function of the gene product is not known, the expression pattern suggests a role in the developing CNS. Hearing impairment is often observed in AGS-susceptible rodents and is thought to contribute to the pathology of AGS. We therefore hypothesized that the Frings mouse exhibits early-onset hearing impairment and that the Frings Mgr1 mutation is responsible for the hearing impairment phenotype that leads to the development of AGS susceptibility. Auditory brainstem response (ABR) thresholds were used to evaluate auditory function in mice carrying the Frings Mgr1 allele and were compared with other AGS-susceptible and -resistant mice. ABR testing demonstrated that mice possessing the Frings Mgr1 allele exhibit a mild to moderate level of hearing impairment that is present during the days following hearing onset. Furthermore, the hearing impairment resulting from the Frings Mgr1 allele is relatively stable, which explains the long duration of AGS susceptibility exhibited by Frings mice compared with other AGS-susceptible mice.


Assuntos
Epilepsia Reflexa/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Receptores Acoplados a Proteínas G/genética , Animais , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos , Camundongos Mutantes , Mutação
16.
Epilepsy Res ; 62(1): 13-25, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15519128

RESUMO

The Frings mouse is a model of audiogenic seizure (AGS) susceptibility. The genetic locus responsible for the AGS phenotype in the Frings mouse has been named monogenic audiogenic seizure-susceptible (MASS1). MASS1 is unique in that it is one of only two identified seizure loci that are not associated with an ion channel mutation. Furthermore, Frings mice display a robust AGS phenotype demonstrating very high and prolonged susceptibility to sound-induced tonic extension seizures. The purpose of this investigation was to use c-Fos immunohistochemistry to map the brain structures involved in the Frings AGS and to examine neuronal hyperexcitability in the inferior colliculus, the brain structure that is recognized as the site of AGS initiation. AGS mapping revealed that intense seizure-induced neuronal activation was mostly limited to structures involved in a brainstem seizure network, including the external and dorsal nuclei of the inferior colliculus, as observed in other AGS rodents. Acoustically induced c-Fos expression in the central nucleus of the inferior colliculus to sub-AGS threshold tone stimulations displayed a greater level of neuronal activation in AGS-susceptible Frings, DBA/2J and noise-primed C57BL/6J mice compared to AGS-resistant C57BL/6J and CF1 mice. The AGS-susceptible mice also displayed c-Fos immunoreactivity that was more focused within the tonotopic response domain of the inferior colliculus compared to AGS-resistant mice. Furthermore, Frings mice displayed significantly greater tonotopic hyper-responsiveness compared to other AGS-susceptible mice.


Assuntos
Epilepsia Reflexa/metabolismo , Colículos Inferiores/metabolismo , Rede Nervosa/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estimulação Acústica , Animais , Mapeamento Encefálico , Epilepsia Reflexa/patologia , Imuno-Histoquímica , Colículos Inferiores/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes Neurológicos , Rede Nervosa/patologia , Neurônios/patologia
17.
Pharm Res ; 20(8): 1293-301, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12948028

RESUMO

PURPOSE: Racemic valnoctamide (VCD) is a central nervous system-active drug commercially available in Europe. VCD possesses two chiral centers and, therefore, it exists as a mixture of four stereoisomers. The purpose of this study was to evaluate the anticonvulsant activity of two VCD stereoisomers in comparison with VCD (racemate), valpromide (VPD), and valproic acid (VPA) and to study their pharmacokinetic-pharmacodynamic relationships. METHODS: The ability of racemic VCD, (2S,3S)-VCD, (2R,3S)-VCD and VPD to block partial seizures was studied in the 6Hz psychomotor seizure model in mice and in the hippocampal kindled rat. The ability of (2S,3S)-VCD and (2R,3S)-VCD to prevent generalized seizures was evaluated in the maximum electroshock (MES) and subcutaneous metrazole (sc Met) seizure tests. The PK of (2S,3S)-VCD, (2R,3S)-VCD, and VPD was studied in the mice utilized in the 6Hz model. RESULTS: All of the tested compounds were effective in the models tested. No significant difference in ED50 values was observed but the plasma and brain EC50 values of (2R,3S)-VCD in the 6Hz model at 32 mA stimulation were 2-fold higher than the EC50 values of (2S,3S)-VCD. An excellent pharmacokinetic-pharmacodynamic correlation was found between the plasma and brain concentrations of the VCD stereoisomers and their anticonvulsant effect in mice. Stereoselectivity was observed in clearance, volume of distribution, and in brain-to-plasma AUC ratio at a dose of 25 mg/kg, but the difference disappeared at higher doses as the clearance of the stereoisomers decreased and their half-life increased. For (2R,3S)-VCD the brain-to-plasma AUC ratio doubled at the tested dose range, while it remained constant for (2S,3S)-VCD. CONCLUSIONS: Racemic VCD, VPD, (2R,3S)-VCD, and (2S,3S)-VCD are effective anticonvulsants in animal models of partial seizures and are more potent than VPA. The more favorable brain penetration of (2S,3S)-VCD and its lower EC50 value in the 6Hz test provides one advantage over (2R,3S)-VCD as a new antiepileptic drug.


Assuntos
Amidas/farmacologia , Amidas/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/farmacocinética , Epilepsia/tratamento farmacológico , Amidas/química , Animais , Anticonvulsivantes/química , Área Sob a Curva , Encéfalo/metabolismo , Epilepsia/metabolismo , Meia-Vida , Injeções Intraperitoneais , Excitação Neurológica , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...