Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35745767

RESUMO

Endothelial progenitor cells (EPCs) are one of the most important stem cells for the neovascularization of tissues damaged by ischemic diseases such as myocardial infarction, ischemic stroke, or critical limb ischemia. However, their low homing efficiency in the treatment of ischemic tissues limits their potential clinical applications. The use of synthetic messenger RNA (mRNA) for cell engineering represents a novel and promising technology for the modulation of cell behavior and tissue regeneration. To improve the therapeutic potential of EPCs, in this study, murine EPCs were engineered with synthetic mRNAs encoding C-X-C chemokine receptor 4 (CXCR4) and P-selectin glycoprotein ligand 1 (PSGL-1) to increase the homing and migration efficiency of EPCs to inflamed endothelium. Flow cytometric measurements revealed that the transfection of EPCs with CXCR4 and PSGL-1 mRNA resulted in increased expressions of CXCR4 and PSGL-1 on the cell surface compared with the unmodified EPCs. The transfection of EPCs with mRNAs did not affect cell viability. CXCR4-mRNA-modified EPCs showed significantly higher migration potential than unmodified cells in a chemotactic migration assay. The binding strength of the EPCs to inflamed endothelium was determined with single-cell atomic force microscopy (AFM). This showed that the mRNA-modified EPCs required a three-fold higher detachment force to be released from the TNF-α-activated endothelium than unmodified EPCs. Furthermore, in a dynamic flow model, significantly increased binding of the mRNA-modified EPCs to inflamed endothelium was detected. This study showed that the engineering of EPCs with homing factors encoding synthetic mRNAs increases the homing and migration potentials of these stem cells to inflamed endothelium. Thus, this strategy represents a promising strategy to increase the therapeutic potential of EPCs for the treatment of ischemic tissues.

2.
Adv Drug Deliv Rev ; 181: 114069, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838648

RESUMO

Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Colágeno/metabolismo , Glicoproteínas/metabolismo , Humanos , Ácido Hialurônico/metabolismo
3.
Front Cell Dev Biol ; 9: 675240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746117

RESUMO

In the adult organism, hematopoietic stem and progenitor cells (HSPC) reside in the bone marrow (BM) in specialized hematopoietic stem cell niches of which the extracellular matrix (ECM) is an integral component. Laminins (LM) are a family of heterotrimeric ECM molecules of which mainly family members containing an α4 or α5 chain are expressed in cells from BM niches and involved in HSPC homing and proliferation. Various integrin and non-integrin laminin receptors have been identified and characterized. Among these, the integrins α6ß1 and α3ß1 were reported to be strongly expressed on human and mouse HSPC. In the present study, we focus on two further specific laminin receptors, namely integrin α7ß1 and basal cell adhesion molecule/Lutheran (BCAM/Lu). Using RT-PCR analyses, immunofluorescence staining, immunoblotting and flow cytometry, we show that both are strongly expressed by human lineage-negative CD34 + HSPC. Treatment with function-blocking antibodies against BCAM/Lu neither inhibits the strong adhesive interaction of CD34 + HSPC with LM-511/LM-521 nor the LM-511/LM-521 mediated changes in CD34 + HSPC proliferation, but however, influences the cytokine-induced differentiation of HSPC in colony formation assays. In addition, stromal-derived factor (SDF) 1α-mediated transmigration of CD34 + HSPC through an endothelial cell layer was effectively diminished by BCAM/Lu antibodies, suggesting a direct involvement of BCAM/Lu in the migration process. This study indicates that both laminin receptors newly identified on human CD34 + HSPC should be taken into consideration in future studies.

4.
Adv Sci (Weinh) ; 8(4): 2002500, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643791

RESUMO

Ischemia impacts multiple organ systems and is the major cause of morbidity and mortality in the developed world. Ischemia disrupts tissue homeostasis, driving cell death, and damages tissue structure integrity. Strategies to heal organs, like the infarcted heart, or to replace cells, as done in pancreatic islet ß-cell transplantations, are often hindered by ischemic conditions. Here, it is discovered that the basement membrane glycoprotein nidogen-1 attenuates the apoptotic effect of hypoxia in cardiomyocytes and pancreatic ß-cells via the αvß3 integrin and beneficially modulates immune responses in vitro. It is shown that nidogen-1 significantly increases heart function and angiogenesis, while reducing fibrosis, in a mouse postmyocardial infarction model. These results demonstrate the protective and regenerative potential of nidogen-1 in ischemic conditions.

5.
Methods Mol Biol ; 2017: 149-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31197775

RESUMO

During cytokine- or chemotherapy-induced hematopoietic stem cell (HSC) mobilization, a highly proteolytic microenvironment can be observed in the bone marrow that has a strong influence on adhesive and chemotactic interactions of HSC with their niches. The increase of proteases during mobilization goes along with a decrease of endogenous protease inhibitors. Prominent members of the proteases involved in HSC mobilization belong to the families of matrix metalloproteinases and cathepsins, which are able to degrade chemokines/cytokines, extracellular matrix components, and membrane-bound adhesion receptors. To determine the functional activity of different proteolytic enzymes, zymographic analyses with different substrates and pH conditions can be employed. An involvement of cysteine cathepsins can be determined by the "active site labeling" technique using a modified inhibitor irreversibly binding to the active center of the enzymes. Intact or degraded chemokines and cytokines, which fall into the range between 1000 and 20,000 Da, can readily be detected by MALDI-TOF analysis. These three methods can help to detect proteolytic activities directly involved in the mobilization process.


Assuntos
Citocinas/química , Células-Tronco Hematopoéticas/citologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Domínio Catalítico , Catepsinas/química , Catepsinas/metabolismo , Linhagem Celular , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicho de Células-Tronco
6.
Oncoimmunology ; 7(2): e1364827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308299

RESUMO

Platelets promote metastasis, among others by coating cancer cells traveling through the blood, which results in protection from NK cell immune-surveillance. The underlying mechanisms, however, remain to be fully elucidated. Here we report that platelet-coating reduces surface expression of NKG2D ligands, in particular MICA and MICB, on tumor cells, which was mirrored by enhanced release of their soluble ectodomains. Similar results were obtained upon exposure of tumor cells to platelet-releasate and can be attributed to the sheddases ADAM10 and ADAM17 that are detectable on the platelet surface and in releasate following activation and at higher levels on platelets of patients with metastasized lung cancer compared with healthy controls. Platelet-mediated NKG2DL-shedding in turn resulted in impaired "induced self" recognition by NK cells as revealed by diminished NKG2D-dependent lysis of tumor cells. Our results indicate that platelet-mediated NKG2DL-shedding may be involved in immune-evasion of (metastasizing) tumor cells from NK cell reactivity.

7.
Biomaterials ; 156: 147-158, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197223

RESUMO

Induced pluripotent stem cells (iPSCs) can be differentiated toward mesenchymal stromal cells (MSCs), but this transition remains incomplete. It has been suggested that matrix elasticity directs cell-fate decisions. Therefore, we followed the hypothesis that differentiation of primary MSCs and generation of iPSC-derived MSCs (iMSCs) is supported by a soft matrix of human platelet lysate (hPL-gel). We demonstrate that this fibrin-based hydrogel supports growth of primary MSCs with pronounced deposition of extracellular matrix, albeit it hardly impacts on gene expression profiles or in vitro differentiation of MSCs. Furthermore, iPSCs can be effectively differentiated toward MSC-like cells on the hydrogel. Unexpectedly, this complex differentiation process is not affected by the substrate: iMSCs generated on tissue culture plastic (TCP) or hPL-gel have the same morphology, immunophenotype, differentiation potential, and gene expression profiles. Moreover, global DNA methylation patterns are essentially identical in iMSCs generated on TCP or hPL-gel, indicating that they are epigenetically alike. Taken together, hPL-gel provides a powerful matrix that supports growth and differentiation of primary MSCs and iMSCs - but this soft hydrogel does not impact on lineage-specific differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Extratos Celulares , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Plásticos , Reologia , Técnicas de Cultura de Tecidos
8.
J Tissue Eng Regen Med ; 11(12): 3508-3522, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28371409

RESUMO

Controlling mesenchymal stromal cell (MSC) shape is a novel method for investigating and directing MSC behaviour in vitro. it was hypothesized that specifigc MSC shapes can be generated by using stiffness-defined biomaterial surfaces and by applying cyclic tensile forces. Biomaterials used were thin and thick silicone sheets, fibronectin coating, and compacted collagen type I sheets. The MSC morphology was quantified by shape descriptors describing dimensions and membrane protrusions. Nanoscale stiffness was measured by atomic force microscopy and the expression of smooth muscle cell (SMC) marker genes (ACTA2, TAGLN, CNN1) by quantitative reverse-transcription polymerase chain reaction. Cyclic stretch was applied with 2.5% or 5% amplitudes. Attachment to biomaterials with a higher stiffness yielded more elongated MSCs with fewer membrane protrusions compared with biomaterials with a lower stiffness. For cyclic stretch, compacted collagen sheets were selected, which were associated with the most elongated MSC shape across all investigated biomaterials. As expected, cyclic stretch elongated MSCs during stretch. One hour after cessation of stretch, however, MSC shape was rounder again, suggesting loss of stretch-induced shape. Different shape descriptor values obtained by different stretch regimes correlated significantly with the expression levels of SMC marker genes. Values of approximately 0.4 for roundness and 3.4 for aspect ratio were critical for the highest expression levels of ACTA2 and CNN1. Thus, specific shape descriptor values, which can be generated using biomaterial-associated stiffness and tensile forces, can serve as a template for the induction of specific gene expression levels in MSC. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Materiais Biocompatíveis/farmacologia , Forma Celular , Células-Tronco Mesenquimais/citologia , Resistência à Tração , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Fatores de Tempo
9.
Neurourol Urodyn ; 36(7): 1723-1733, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27935100

RESUMO

AIM: To investigate if injection of cells in the urethral sphincter complex causes unspecific bulking effects. METHODS: Human mesenchymal stromal cells were isolated, expanded, and characterized. For transurethral injection, cells were labeled with the fluorescent dye PKH26 and in magnetic resonance imaging associated experiments with superparamagnetic particles. Aliquots of cells in 250 µL solvent were injected under vision in the urethral sphincter of immuno-suppressed Göttingen minipigs. Sphincteric closure pressure was recorded by standard and high-definition urethral pressure profilometry prior to and after cell injection. The animals were sacrificed after surgery or after 3 weeks, 3, 6, or 12 months of follow-up. The localisation of the injected cells was explored by histochemistry. Sham-treated animals served as controls. RESULTS: PKH26-labeled cells survive injections in sphincter tissue samples by Williams cystoscopic injection needle well. In our animal study, the cellular depots were detected in the submucosa or in deeper zones of the sphincter, depending of the length of the injection needle (4-8 mm). Adverse effects associated with injection of cells or solvent such as a noteworthy bleeding, incontinence, or obstruction, were not recorded (n = 96 minipigs). However, a transient infiltration of macrophages was detected 3 weeks after cell injection. Changes in the urethral pressure profiles were not observed in cell-treated (n = 72) compared to sham-treated animals (n = 24). CONCLUSIONS: Injection of small aliquots of cells to investigate cell therapies in minipigs is a feasible and safe procedure, and it does not bias the intrinsic urethral wall pressure.


Assuntos
Células-Tronco Mesenquimais , Uretra/cirurgia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Injeções , Imageamento por Ressonância Magnética , Suínos , Porco Miniatura , Uretra/diagnóstico por imagem
10.
Sci Rep ; 6: 35840, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775041

RESUMO

Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno Tipo I/química , Células-Tronco Mesenquimais/citologia , Músculo Liso/citologia , Actinas/genética , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/genética , Microscopia de Força Atômica , Proteínas Musculares/genética , Fenótipo , Tubulina (Proteína)/metabolismo , Calponinas
11.
Stem Cells Int ; 2016: 4148093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839560

RESUMO

Efficient ex vivo expansion of hematopoietic stem cells with a concomitant preservation of stemness and self-renewal potential is still an unresolved ambition. Increased numbers of methods approaching this issue using three-dimensional (3D) cultures were reported. Here, we describe a simplified 3D hanging drop model for the coculture of cord blood-derived CD34(+) hematopoietic stem and progenitor cells (HSPCs) with bone marrow-derived mesenchymal stromal cells (MSCs). When seeded as a mixed cell suspension, MSCs segregated into tight spheroids. Despite the high expression of niche-specific extracellular matrix components by spheroid-forming MSCs, HSPCs did not migrate into the spheroids in the initial phase of coculture, indicating strong homotypic interactions of MSCs. After one week, however, HSPC attachment increased considerably, leading to spheroid collapse as demonstrated by electron microscopy and immunofluorescence staining. In terms of HSPC proliferation, the conventional 2D coculture system was superior to the hanging drop model. Furthermore, expansion of primitive hematopoietic progenitors was more favored in 2D than in 3D, as analyzed in colony-forming assays. Conclusively, our data demonstrate that MSCs, when arranged with a spread (monolayer) shape, exhibit better HSPC supportive qualities than spheroid-forming MSCs. Therefore, 3D systems are not necessarily superior to traditional 2D culture in this regard.

12.
Stem Cell Res Ther ; 7: 29, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26869043

RESUMO

INTRODUCTION: Human mesenchymal stromal cells (MSCs) can be isolated from different sources including bone marrow and term placenta. These two populations display distinct patterns of proliferation and differentiation in vitro. Since proliferation and differentiation of cells are modulated by cell-matrix interactions, we investigated the attachment of MSCs to a set of peptide-coated surfaces and explored their interactions with peptides in suspension. METHODS: Human MSCs were isolated from bone marrow and term placenta and expanded. Binding of MSCs to peptides was investigated by a cell-attachment spot assay, by blocking experiments and flow cytometry. The integrin expression pattern was explored by a transcript array and corroborated by quantitative reverse transcription polymerase chain reaction and flow cytometry. RESULTS: Expanded placenta-derived MSCs (pMSCs) attached well to surfaces coated with fibronectin-derived peptides P7, P15, and P17, whereas bone marrow-derived MSCs (bmMSCs) attached to P7, but barely to P15 and P17. The binding of bmMSCs and pMSCs to the peptides was mediated by ß1 integrins. In suspension, expanded bmMSCs barely bind to P7, P13, P15, and less to P14 and P17. Ex vivo, bmMSCs failed to bind P7, but displayed a weak interaction with P13, P14, and P15. In suspension, expanded pMSCs displayed binding to many peptides, including P4, P7, P13, P14, P15, and P17. The differences observed in binding of bmMSCs and pMSCs to the peptides were associated with significant differences in expression of integrin α2-, α4-, and α6-chains. CONCLUSIONS: Human bmMSCs and pMSCs show distinct patterns of attachment to defined peptides and maintain differences in expression of integrins in vitro. Interactions of ex vivo bmMSCs with a given peptide yield different staining patterns compared to expanded bmMSCs in suspension. Attachment of expanded MSCs to peptides on surfaces is different from interactions of expanded MSCs with peptides in suspension. Studies designed to investigate the interactions of human MSCs with peptide-augmented scaffolds or peptides in suspension must therefore regard these differences in cell-peptide interactions.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Adulto , Idoso , Células da Medula Óssea/fisiologia , Adesão Celular , Células Cultivadas , Meios de Cultura/química , Feminino , Fibronectinas/química , Humanos , Masculino , Especificidade de Órgãos , Fragmentos de Peptídeos/química , Placenta/citologia , Gravidez
13.
Stem Cells Int ; 2016: 5646384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770208

RESUMO

When germ-free cell cultures became a laboratory routine, hopes were high for using this novel technology for treatment of diseases or replacement of cells in patients suffering from injury, inflammation, or cancer or even refreshing cells in the elderly. Today, more than 50 years after the first successful bone marrow transplantation, clinical application of hematopoietic stem cells is a routine procedure, saving the lives of many every day. However, transplanting other than hematopoietic stem and progenitor cells is still limited to a few applications, and it mainly applies to mesenchymal stromal cells (MSCs) isolated from bone marrow. But research progressed and different trials explore the clinical potential of human MSCs isolated from bone marrow but also from other tissues including adipose tissue. Recently, MSCs isolated from bone marrow (bmMSCs) were shown to be a blend of distinct cells and MSCs isolated from different tissues show besides some common features also some significant differences. This includes the expression of distinct antigens on subsets of MSCs, which was utilized recently to define and separate functionally different subsets from bulk MSCs. We therefore briefly discuss differences found in subsets of human bmMSCs and in MSCs isolated from some other sources and touch upon how this could be utilized for cell-based therapies.

14.
PLoS One ; 10(12): e0145153, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26673782

RESUMO

The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.


Assuntos
Potenciais de Ação , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Actinas/genética , Actinas/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Humanos , Canais Iônicos , Transporte de Íons , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Bexiga Urinária/citologia , Calponinas
15.
PLoS One ; 10(9): e0137419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406476

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.


Assuntos
Laminina/biossíntese , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular , Músculo Liso/fisiologia , Regeneração , Adulto , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Masculino , Isoformas de Proteínas/biossíntese
16.
Matrix Biol ; 44-46: 175-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617493

RESUMO

Hematopoietic stem cells (HSCs) have the capability to migrate back and forth between their preferred microenvironment in bone marrow niches and the peripheral blood, but under steady-state conditions only a marginal number of stem cells can be found in the circulation. Different mobilizing agents, however, which create a highly proteolytic milieu in the bone marrow, can drastically increase the number of circulating HSCs. Among other proteases secreted and membrane-bound matrix metalloproteinases (MMPs) are known to be involved in the induced mobilization process and can digest niche-specific extracellular matrix components and cytokines responsible for stem cell retention to the niches. Iatrogenic stem cell mobilization and stem cell homing to their niches are clinically employed on a routine basis, although the exact mechanisms of both processes are still not fully understood. In this review we provide an overview on the various roles of MMPs in the induced release of HSCs from the bone marrow.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Metaloproteinases da Matriz/metabolismo , Animais , Citocinas/metabolismo , Proteínas da Matriz Extracelular , Células-Tronco Hematopoéticas/citologia , Humanos , Nicho de Células-Tronco
17.
Adv Drug Deliv Rev ; 82-83: 123-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25451135

RESUMO

Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Regeneração , Medicina Regenerativa/métodos , Uretra/cirurgia , Incontinência Urinária por Estresse/terapia , Animais , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , Células Satélites de Músculo Esquelético/transplante
18.
J Innate Immun ; 6(4): 467-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24458132

RESUMO

Laminins play a fundamental role in basement membrane architecture and function in human skin. The C-terminal laminin G domain-like (LG) modules of laminin α chains are modified by proteolysis to generate LG1-3 and secreted LG4-5 tandem modules. In this study, we provide evidence that skin-derived cells process and secrete biologically active peptides from the LG4-5 module of the laminin α3, α4 and α5 chain in vitro and in vivo. We show enhanced expression and processing of the LG4-5 module of laminin α3 in keratinocytes after infection and in chronic wounds in which the level of expression and further processing of the LG4-5 module correlated with the speed of wound healing. Furthermore, bacterial or host-derived proteases promote processing of laminin α3 LG4-5. On a functional level, we show that LG4-5-derived peptides play a role in wound healing. Moreover, we demonstrate that LG4-derived peptides from the α3, α4 and α5 chains have broad antimicrobial activity and possess strong chemotactic activity to mononuclear cells. Thus, the data strongly suggest a novel multifunctional role for laminin LG4-5-derived peptides in human skin and its involvement in physiological processes and pathological conditions such as inflammation, chronic wounds and skin infection.


Assuntos
Anti-Infecciosos/metabolismo , Infecções Bacterianas/imunologia , Candidíase/imunologia , Queratinócitos/fisiologia , Laminina/metabolismo , Leucócitos Mononucleares/fisiologia , Fragmentos de Peptídeos/metabolismo , Pele/patologia , Linhagem Celular Transformada , Sobrevivência Celular , Quimiotaxia , Humanos , Imunidade Inata , Queratinócitos/microbiologia , Laminina/genética , Fragmentos de Peptídeos/genética , Proteólise , Pele/imunologia , Pele/microbiologia , Cicatrização
19.
Breast Cancer Res Treat ; 140(1): 35-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23807419

RESUMO

Bisphosphonates (BPs) are in clinical use for the treatment of breast cancer patients with bone metastases. Their anti-resorptive effect is mainly explained by inhibition of osteoclast activity, but recent evidence also points to a direct action of BPs on bone-forming osteoblasts. However, the mechanisms how BPs influence osteoblasts and their interactions with breast cancer cells are still poorly characterized. Human osteoblasts isolated from bone specimens were characterized in depth by their expression of osteogenic marker genes. The influence of the nitrogen-containing BPs zoledronate (Zol), ibandronate (Iban), and pamidronate (Pam) on molecular and cellular functions of osteoblasts was assessed focusing on cell proliferation and viability, apoptosis, cytokine secretion, and osteogenic-associated genes. Furthermore, effects of BPs on osteoblast-breast tumor cell interactions were examined in an established in vitro model system. The BPs Zol and Pam inhibited cell viability of osteoblasts. This effect was mediated by an induction of caspase-dependent apoptosis in osteoblasts. By interfering with the mevalonate pathway, Zol also reduces the proliferation of osteoblasts. The expression of phenotypic markers of osteogenic differentiation was altered by Zol and Pam. In addition, both BPs strongly influenced the secretion of the chemokine CCL2 by osteoblasts. Breast cancer cells also responded to Zol and Pam with a reduced cell adhesion to osteoblast-derived extracellular matrix molecules and with a decreased migration in response to osteoblast-secreted factors. BPs revealed prominent effects on human osteoblasts. Zol and Pam as the most potent BPs affected not only the expression of osteogenic markers, osteoblast viability, and proliferation but also important osteoblast-tumor cell interactions. Changing the osteoblast metabolism by BPs modulates migration and adhesion of breast cancer cells as well.


Assuntos
Neoplasias da Mama/patologia , Difosfonatos/farmacologia , Osteoblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/genética , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Imidazóis/farmacologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Ácido Zoledrônico
20.
PLoS One ; 8(2): e54778, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405094

RESUMO

Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)-derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7-10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors.


Assuntos
Materiais Biomiméticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Nanoestruturas , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Humanos , Hidrogéis/farmacologia , Integrinas/metabolismo , Ligantes , Nicho de Células-Tronco/fisiologia , Trombospondinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...