Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 660: 1317-1326, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743926

RESUMO

In lowland deltas with intensive land use, surface water levels are human controlled letting in river water during dry periods and discharge by pumping during wet periods. The water levels are usually maintained at a fixed level year-round or at fixed winter and (higher) summer levels. Several water authorities in The Netherlands consider implementing a more natural and flexible water level regime in nature reserves, with low levels in summer and high levels in winter. The objective of this study was to assess the catchment-scale hydrological and hydrochemical effects of such a change using water and solute balance modeling. We focus on ten study nature reserves where a conversion to flexible water management was planned or recently implemented. Monitoring data from the catchments were used for validating the water balance and as boundary condition input for the solute balance calculations. For all catchments, the results show relevant changes after implementing flexible water level management. For example, the surface water residence times increased (avg. +25%), the inlet and outlet fluxes reduced (avg. -38% and -72%), the chloride concentrations reduced (avg. -14%), and the N-tot concentrations increased (avg. +13%). Both the quantification of water flux changes and the detection of water quality risks were highly relevant for the water authorities. Customizing our approach to the specific circumstances in other low-lying artificial catchments worldwide may help local water managers in optimizing their water level management.

2.
J Contam Hydrol ; 127(1-4): 30-46, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21549444

RESUMO

Quantitative insight into the reaction capacity of porous media is necessary to assess the buffering capacity of the subsurface against contaminant input via groundwater recharge. Here, reaction capacity is to be considered as a series of geochemical characteristics that control acid/base conditions, redox conditions and sorption intensity. Using existing geochemical analyses, a statistical regional assessment of the reaction capacity was performed for two geologically different areas in the Netherlands. The first area is dominated by Pleistocene aquifer sediments only, in the second area a heterogeneous Holocene confining layer is found on top of the Pleistocene aquifer sediments. Within both areas, two or more regions can be distinguished that have a distinctly different geological build-up of the shallow subsurface. The reactive compounds considered were pyrite, reactive Fe other than pyrite, sedimentary organic matter, carbonate and clay content. This characterization was complemented by the analysis of a dataset of samples newly collected, from two regions within the Pleistocene area, where the sedimentary facies of samples was additionally distinguished. The statistical assessment per area was executed at the levels of region, geological formation and lithology class. For both areas, significant differences in reaction capacities were observed between: 1. different lithology classes within a geological formation in a single region, 2. identical geological formations in different regions and 3. various geological formations within a single region. Here, the reaction capacity is not only controlled by lithostratigraphy, but also by post-depositional diagenesis and paleohydrology. Correlation coefficients among the reactive compounds were generally higher for sand than for clay, but insufficiently high to allow good estimation of reactive compounds from each other. For the sandy Pleistocene aquifer sediments, the content of reactive compounds was frequently observed to be below detection limits. From this, future characterization of sediment reaction capacity is best performed at the sublevel of lithology class, being the geochemically near-uniform unit identifiable for individual geological formations within geographic regions. Additional subdivision on facies provides particular insight in the spatial entity where relatively high reaction capacities may be encountered. To obtain quantitative insight into the reaction capacity of aquifer sediments, non-sandy minor subunits should be well characterised on their reaction capacity as well as their spatial occurrence in the geological formations. A straightforward approach is presented in which the regional statistics on geochemical reactivity become combined with a 3-dimensional geological voxel model. This results into 3-dimensional data fields on reactivity, which are suitable for, for example, groundwater transport modelling. The sedimentological architecture of the deposits becomes well maintained in the geochemical data field, which is an advantage in itself.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Geografia , Geologia , Modelos Teóricos , Países Baixos , Movimentos da Água , Purificação da Água
3.
Environ Sci Technol ; 42(13): 4863-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18678018

RESUMO

Establishment of natural background levels (NBL) for groundwater is commonly performed to serve as reference when assessing the contamination status of groundwater units. We compare various selection methods to establish NBLs using groundwater quality data for four hydrogeologically different areas in the highly populated and developed subcatchment Western River Rhine, The Netherlands: selection of old groundwater (before 1945), of tritium-free groundwater (i.e., infiltrated before 1950), and of groundwater having no agricultural contamination by NO3 and SO4. Differences as well as similarities in percentile values for Cl, NH4, and SO4 concentrations are observed among the selection methods as well as the spatial units, pointing out that selection of the data setis a crucial step in deducing NBLs. The following general points of attention are deduced: (1) reference to composition of recharge water (rain or river infiltrate) is necessary to confirm the statistical outcomes, (2) old analyses are affected by conservation errors after sampling for redox-sensitive solutes and may be obtained by selective sampling, (3) old analyses are the only direct reference for NBLs for groundwater units having only anthropogenically influenced, young groundwater at present, and (4) establishment of a priori percentile values as maximum NBL is not right and confirmation by additional process-based insight in the controls on water composition is necessary.


Assuntos
Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Água Doce/química , Poluentes Químicos da Água/análise , Cloretos/análise , Fenômenos Geológicos , Geologia , Países Baixos , Compostos de Amônio Quaternário/análise , Sulfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA