Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Infection ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668919

RESUMO

BACKGROUND: Melioidosis is a bacterial infection associated with high mortality. The diagnostic approach to this rare disease in Europe is challenging, especially because pulmonary manifestation of melioidosis can mimic pulmonary tuberculosis (TB). Antibiotic therapy of melioidosis consists of an initial intensive phase of 2-8 weeks followed by an eradication therapy of 3-6 months. CASE PRESENTATION: We present the case of a 46-year-old female patient with pulmonary melioidosis in Germany. The patient showed chronic cough, a pulmonary mass and a cavitary lesion, which led to the initial suspicion of pulmonary TB. Melioidosis was considered due to a long-term stay in Thailand with recurrent exposure to rice fields. RESULTS: Microbiologic results were negative for TB. Histopathology of an endobronchial tumor showed marked chronic granulation tissue and fibrinous inflammation. Melioidosis was diagnosed via polymerase chain reaction by detection of Burkholderia pseudomallei/mallei target from mediastinal lymph-node tissue. CONCLUSION: This case report emphasizes that melioidosis is an important differential diagnosis in patients with suspected pulmonary tuberculosis and recent travel to South-East Asia.

3.
Front Med (Lausanne) ; 11: 1337367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327708

RESUMO

Following kidney transplantation, lifelong immunosuppressive therapy is essential to prevent graft rejection. On the downside, immunosuppression increases the risk of severe infections, a major cause of death among kidney transplant recipients (KTRs). To improve post-transplant outcomes, adequate immunosuppressive therapy is therefore a challenging but vital aspect of clinical practice. Torque teno virus load (TTVL) was shown to reflect immune competence in KTRs, with low TTVL linked to an elevated risk for rejections and high TTVL associated with infections in the first year post-transplantation. Yet, little is known about the dynamics of TTVL after the first year following transplantation and how TTVL changes with respect to short-term modifications in immunosuppressive therapy. Therefore, we quantified TTVL in 106 KTRs with 108 clinically indicated biopsies, including 65 biopsies performed >12 months post-transplantation, and correlated TTVL to histopathology. In addition, TTVL was quantified at 7, 30, and 90 days post-biopsy to evaluate how TTVL was affected by changes in immunosuppression resulting from interventions based on histopathological reporting. TTVL was highest in patients biopsied between 1 and 12 months post-transplantation (N = 23, median 2.98 × 107 c/mL) compared with those biopsied within 30 days (N = 20, median 7.35 × 103 c/mL) and > 1 year post-transplantation (N = 65, median 1.41 × 104 c/mL; p < 0.001 for both). Patients with BK virus-associated nephropathy (BKVAN) had significantly higher TTVL than patients with rejection (p < 0.01) or other pathologies (p < 0.001). When converted from mycophenolic acid to a mTOR inhibitor following the diagnosis of BKVAN, TTVL decreased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.01 for both). In KTR with high-dose corticosteroid pulse therapy for rejection, TTVL increased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.05 and p < 0.01, respectively). Of note, no significant changes were seen in TTVL within 7 days of changes in immunosuppressive therapy. Additionally, TTVL varied considerably with time since transplantation and among individuals, with a significant influence of age and BMI on TTVL (p < 0.05 for all). In conclusion, our findings indicate that TTVL reflects changes in immunosuppressive therapy, even in the later stages of post-transplantation. To guide immunosuppressive therapy based on TTVL, one should consider inter- and intraindividual variations, as well as potential confounding factors.

4.
Infect Genet Evol ; 119: 105577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403035

RESUMO

In January 2021, the monitoring of circulating variants of SARS-CoV-2 was initiated in Germany under the Corona Surveillance Act, which was discontinued after July 2023. This initiative aimed to enhance pandemic containment, as specific amino acid changes, particularly in the spike protein, were associated with increased transmission and reduced vaccine efficacy. Our group conducted whole genome sequencing using the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and, starting in May 2023, on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients at Heidelberg University Hospital, associated hospitals, and the public health office in the Rhine-Neckar/Heidelberg region. In total, we sequenced 26,795 SARS-CoV-2-positive samples between January 2021 and July 2023. Valid sequences, meeting the requirements for upload to the German electronic sequencing data hub (DESH) operated by the Robert Koch Institute (RKI), were determined for 24,852 samples, and the lineage/clade could be identified for 25,912 samples. The year 2021 witnessed significant dynamics in the circulating variants in the Rhine-Neckar/Heidelberg region, including A.27.RN, followed by the emergence of B.1.1.7 (Alpha), subsequently displaced by B.1.617.2 (Delta), and the initial occurrences of B.1.1.529 (Omicron). By January 2022, B.1.1.529 had superseded B.1.617.2, dominating with over 90%. The years 2022 and 2023 were then characterized by the dominance of B.1.1.529 and its sublineages, particularly BA.5 and BA.2, and more recently, the emergence of recombinant variants like XBB.1.5. Since the global dominance of B.1.617.2, the identified variant distribution in our local study, apart from a time delay in the spread of new variants, can be considered largely representative of the global distribution. om a time delay in the spread of new variants, can be considered largely representative of the global distribution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Alemanha/epidemiologia , Hospitais Universitários
5.
Small Methods ; : e2300609, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158388

RESUMO

Recent studies dedicated to layered van der Waals crystals have attracted significant attention to magnetic atomically thin crystals offering unprecedented opportunities for applications in innovative magnetoelectric, magneto-optic, and spintronic devices. The active search for original platforms for the low-dimensional magnetism study has emphasized the entirely new magnetic properties of two dimensional (2D) semiconductor CrSBr. Herein, for the first time, the electrochemical exfoliation of bulk CrSBr in a non-aqueous environment is demonstrated. Notably, crystal cleavage governed by the structural anisotropy occurred along two directions forming atomically thin and few-layered nanoribbons. The exfoliated material possesses an orthorhombic crystalline structure and strong optical anisotropy, showing the polarization dependencies of Raman signals. The antiferromagnetism exhibited by multilayered CrSBr gives precedence to ferromagnetic ordering in the revealed CrSBr nanostructures. Furthermore, the potential application of CrSBr nanoribbons is pioneered for electrochemical photodetector fabrication and demonstrates its responsivity up to 30 µA cm-2 in the visible spectrum. Moreover, the CrSBr-based anode for lithium-ion batteries exhibited high performance and self-improving abilities. This anticipates that the results will pave the way toward the future study of CrSBr and practical applications in magneto- and optoelectronics.

6.
Transplantation ; 107(12): e363-e369, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798825

RESUMO

BACKGROUND: Quantification of torque teno virus (TTV) has been proposed as a surrogate parameter to monitor immunocompetence in kidney transplant recipients (KTRs) early after transplantation. However, its use in monitoring short-term changes of immunosuppression in KTRs late after transplantation requires further investigation. METHODS: In this post hoc analysis, we quantified TTV load in sera of 76 KTRs, with 43 pausing mycophenolic acid (MPA) 1 wk before to 4 wk after COVID-19 vaccination to increase vaccine response. TTV load was quantified before, 4 wk, and 3 mo postvaccination. Results were compared to 33 KTRs with continued standard immunosuppressive therapy and with 18 hemodialysis as well as 18 healthy control subjects. RESULTS: TTV load before vaccination was with a median (interquartile range) of 1.39 × 10 4 copies/milliliter (c/mL) (9.17 × 10 1 -2.66 × 10 5 c/mL) highest in KTRs compared to 1.73 × 10 3 c/mL (1.07 × 10 3 -1.31 × 10 4 c/mL) in hemodialysis patients and 1.53 × 10 2 c/mL (6.38-1.29 × 10 3 c/mL) in healthy controls. In KTRs with MPA withdrawal, TTV load decreased significantly from a median (interquartile range) of 1.11 × 10 4 c/mL (4.75 × 10 2 -1.92 × 10 5 c/mL) to 5.24 × 10 3 c/mL (6.92 × 10 2 -6.91 × 10 4 c/mL) 4-5 wk after initiation of MPA withdrawal ( P = 0.003). In patients with MPA withdrawal, TTV load was significantly inversely correlated with COVID-19 or SARS-CoV-2-specific antibodies 4 wk and 3 mo postvaccination ( P = 0.009 and P = 0.004). CONCLUSIONS: TTV load reflects changes in immunosuppressive therapy even late after transplantation, supporting its use to monitor immunocompetence in KTRs.


Assuntos
COVID-19 , Transplante de Rim , Torque teno virus , Humanos , Transplante de Rim/efeitos adversos , Vacinas contra COVID-19 , Carga Viral , Terapia de Imunossupressão , Transplantados , DNA Viral
7.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37699398

RESUMO

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Assuntos
Senescência Celular , Senoterapia , Senescência Celular/genética , Morte Celular , Compostos de Anilina
8.
Nature ; 620(7974): 533-537, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587298

RESUMO

Controlling quantum materials with light is of fundamental and technological importance. By utilizing the strong coupling of light and matter in optical cavities1-3, recent studies were able to modify some of their most defining features4-6. Here we study the magneto-optical properties of a van der Waals magnet that supports strong coupling of photons and excitons even in the absence of external cavity mirrors. In this material-the layered magnetic semiconductor CrSBr-emergent light-matter hybrids called polaritons are shown to substantially increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons. Our results highlight the importance of exciton-photon self-hybridization in van der Waals magnets and motivate novel directions for the manipulation of quantum material properties by strong light-matter coupling.

10.
ACS Nano ; 17(6): 5316-5328, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926838

RESUMO

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga-Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr-S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron-phonon and exciton-phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

11.
Healthcare (Basel) ; 11(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36900693

RESUMO

Physical activity (PA) plays an important role in affect processing. Studies describe the orbitofrontal cortex (OFC) as a major hub for emotion processing and the pathophysiology of affective disorders. Subregions of the OFC show diverse functional connectivity (FC) topographies, but the effect of chronic PA on subregional OFC FC still lacks scientific understanding. Therefore, we aimed at investigating the effects of regular PA on the FC topographies of OFC subregions in healthy individuals within a longitudinal randomized controlled exercise study. Participants (age: 18-35 years) were randomly assigned to either an intervention group (IG; N = 18) or a control group (CG; N = 10). Fitness assessments, mood questionnaires, and resting state functional magnetic resonance imaging (rsfMRI) were performed four times over the duration of 6 months. Using a detailed parcellation of the OFC, we created subregional FC topography maps at each time point and applied a linear mixed model to assess the effects of regular PA. The posterior-lateral right OFC showed a group and time interaction, revealing decreased FC with the left dorsolateral prefrontal cortex in the IG, while FC in the CG increased. Group and time interaction in the anterior-lateral right OFC with the right middle frontal gyrus was driven by increased FC in the IG. The posterior-lateral left OFC showed a group and time interaction based on differential change in FC to the left postcentral gyrus and the right occipital gyrus. This study emphasized regionally distinctive FC changes induced by PA within the lateral OFC territory, while providing aspects for further research.

12.
Nano Lett ; 23(3): 1068-1076, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36637381

RESUMO

The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.

13.
ACS Nano ; 17(1): 288-299, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36537371

RESUMO

Atomic-level defects in van der Waals (vdW) materials are essential building blocks for quantum technologies and quantum sensing applications. The layered magnetic semiconductor CrSBr is an outstanding candidate for exploring optically active defects because of a direct gap, in addition to a rich magnetic phase diagram, including a recently hypothesized defect-induced magnetic order at low temperature. Here, we show optically active defects in CrSBr that are probes of the local magnetic environment. We observe a spectrally narrow (1 meV) defect emission in CrSBr that is correlated with both the bulk magnetic order and an additional low-temperature, defect-induced magnetic order. We elucidate the origin of this magnetic order in the context of local and nonlocal exchange coupling effects. Our work establishes vdW magnets like CrSBr as an exceptional platform to optically study defects that are correlated with the magnetic lattice. We anticipate that controlled defect creation allows for tailor-made complex magnetic textures and phases with direct optical access.

14.
Microbiol Spectr ; 10(5): e0122922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36066256

RESUMO

Access to reverse transcription-PCR (RT-PCR) testing, the gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, is limited throughout the world, due to restricted resources, available infrastructure, and high costs. Antigen-detecting rapid diagnostic tests (Ag-RDTs) overcome some of these barriers, but independent clinical validations in settings of intended use are scarce. To inform the World Health Organization's (WHO) emergency use listing (EUL) procedure and ensure affordable, high-quality Ag-RDTs, we assessed the performance and ease of use of the SureStatus for SARS-CoV-2. For this prospective, multicenter diagnostic accuracy study, we recruited unvaccinated participants with presumed SARS-CoV-2 infection in India and Germany from December 2020 to March 2021, when the Alpha (B.1.1.7) variant was predominantly circulating. Paired swabs were performed for (i) routine clinical RT-PCR testing (sampling was either nasopharyngeal [NP] or combined NP and oropharyngeal [NP/OP]) and (ii) Ag-RDT (sampling was NP). Performance of the Ag-RDT was compared to RT-PCR overall and by predefined subgroups, e.g., cycle threshold (CT) value, symptoms, and days from symptom onset. To understand the usability, a system usability scale (SUS) questionnaire and ease-of-use (EoU) assessment were performed. A total of 1,119 participants were included in the analysis, of whom 205 (18.3%) were RT-PCR positive. SureStatus detected 169 out of 205 RT-PCR-positive participants, reporting a sensitivity of 82.4% (95% confidence interval [CI]: 76.6% to 87.1%) and a specificity of 98.5% (95% CI: 97.4% to 99.1%). In the first 7 days post-symptom onset, the sensitivity was 90.7% (95% CI: 83.5% to 94.9%), when CT values were low and viral loads were high. The test was characterized as easy to use (SUS, 85/100) and considered suitable for point-of-care settings, although quality concerns were raised due to visibly contaminated packaging of swabs included in the test kits. The SureStatus diagnostic test can be considered a reliable test during the first week of SARS-CoV-2 infection, with high sensitivity in combination with excellent usability. IMPORTANCE Our manufacturer-independent, prospective diagnostic accuracy study assessed clinical performance in participants presumed to have a SARS-CoV-2 infection at three study sites in two countries. We assessed the accuracy overall and in predefined subgroups (CT values and symptom duration). SureStatus performed with high sensitivity. Its sensitivity was particularly high in the first 3 days after symptom onset and when CT values were low (i.e., the viral load was high). The system usability and ease-of-use assessment complements the accuracy assessment of the test and highlights critical factors to facilitate the widespread use of SureStatus in point-of-care settings. The high sensitivity demonstrated by the evaluated Ag-RDT within the first days of symptoms, when most transmission occurs, supports the role of Ag-RDTs for public health-relevant screening. Evidence from this study was used to inform the World Health Organization Emergency Use Listing procedure.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , Sensibilidade e Especificidade , Organização Mundial da Saúde
15.
Nat Commun ; 13(1): 5000, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008409

RESUMO

Extraordinary optoelectronic properties of van der Waals (vdW) heterostructures can be tuned via strain caused by mechanical deformation. Here, we demonstrate strong and localized luminescence in the ultraviolet region from interface bubbles between stacked multilayers of hexagonal boron nitride (hBN). Compared to bubbles in stacked monolayers, bubbles formed by stacking vdW multilayers show distinct mechanical behavior. We use this behavior to elucidate radius- and thickness-dependent bubble geometry and the resulting strain across the bubble, from which we establish the thickness-dependent bending rigidity of hBN multilayers. We then utilize the polymeric material confined within the bubbles to modify the bubble geometry under electron beam irradiation, resulting in strong luminescence and formation of optical standing waves. Our results open a route to design and modulate microscopic-scale optical cavities via strain engineering in vdW materials, which we suggest will be relevant to both fundamental mechanical studies and optoelectronic applications.

16.
ACS Nano ; 16(7): 10364-10371, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35849654

RESUMO

Control of nucleation sites is an important goal in materials growth: nuclei in regular arrays may show emergent photonic or electronic behavior, and once the nuclei coalesce into thin films, the nucleation density influences parameters such as surface roughness, stress, and grain boundary structure. Tailoring substrate properties to control nucleation is therefore a powerful tool for designing functional thin films and nanomaterials. Here, we examine nucleation control for metals deposited on two-dimensional materials in a situation where substrate effects are absent and heterogeneous nucleation sites are minimized. Through quantification of faceted, epitaxial Au island nucleation on graphene, we show that ultralow nucleation densities with nuclei several micrometers apart can be achieved on suspended graphene under conditions where we measure 2-3 orders of magnitude higher nucleation density on the adjacent supported substrate. We estimate diffusion distances using nucleation theory and find a strong sensitivity of nucleation and diffusion to suspended graphene thickness. Finally, we discuss the role of surface roughness as the main factor determining nucleation density on clean free-standing graphene.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35627616

RESUMO

Acute exercise has beneficial effects on mood and is known to induce modulations in functional connectivity (FC) within the emotional network. However, the long-term effects of exercise on affective brain circuits remain largely unknown. Here, we investigated the effects of 6 months of regular exercise on mood, amygdala structure, and functional connectivity. This study comprised N = 18 healthy sedentary subjects assigned to an intervention group (IG; 23.9 ± 3.9 years; 3 trainings/week) and N = 10 subjects assigned to a passive control group (CG; 23.7 ± 4.2 years). At baseline and every two months, performance diagnostics, mood questionnaires, and structural and resting-state-fMRI were conducted. Amygdala-nuclei segmentation and amygdala-to-whole-brain FC analysis were performed. Linear mixed effects models and correlation analyses were conducted between FC, relVO2max, and mood scores. Data showed increases in relVO2max exclusively in the IG. Stronger anticorrelation in amygdala-precuneus FC was found, along with a stronger positive correlation in the amygdala-temporal pole FC in the IG after 4 and 6 months, while mood and amygdala volume did not reveal significant interactions. The relVO2max/amygdala-temporal pole FC correlated positively, and the amygdala-precuneus/amygdala-temporal pole FC correlated negatively. Findings suggest that exercise induced long-term modulations of the amygdala FC with the precuneus and temporal pole, shedding light on potential mechanisms by which exercise has positive influences on mood-related networks, typically altered in affective disorders.


Assuntos
Tonsila do Cerebelo , Mapeamento Encefálico , Afeto , Tonsila do Cerebelo/diagnóstico por imagem , Exercício Físico , Terapia por Exercício , Humanos
18.
Cell Metab ; 34(6): 902-918.e6, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584694

RESUMO

Short-term fasting is beneficial for the regeneration of multiple tissue types. However, the effects of fasting on muscle regeneration are largely unknown. Here, we report that fasting slows muscle repair both immediately after the conclusion of fasting as well as after multiple days of refeeding. We show that ketosis, either endogenously produced during fasting or a ketogenic diet or exogenously administered, promotes a deep quiescent state in muscle stem cells (MuSCs). Although deep quiescent MuSCs are less poised to activate, slowing muscle regeneration, they have markedly improved survival when facing sources of cellular stress. Furthermore, we show that ketone bodies, specifically ß-hydroxybutyrate, directly promote MuSC deep quiescence via a nonmetabolic mechanism. We show that ß-hydroxybutyrate functions as an HDAC inhibitor within MuSCs, leading to acetylation and activation of an HDAC1 target protein p53. Finally, we demonstrate that p53 activation contributes to the deep quiescence and enhanced resilience observed during fasting.


Assuntos
Jejum , Proteína Supressora de Tumor p53 , Ácido 3-Hidroxibutírico , Jejum/fisiologia , Músculos , Mioblastos
19.
J Phys Chem Lett ; 13(14): 3217-3223, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377657

RESUMO

Spectroscopic methods enabling real-time monitoring of dynamic surface processes are a prerequisite for identifying how a catalyst triggers a chemical reaction. We present an in situ photoluminescence spectroscopy approach for probing the thermocatalytic 2-propanol oxidation over mesostructured Co3O4 nanowires. Under oxidative conditions, a distinct blue emission at ∼420 nm is detected that increases with temperature up to 280 °C, with an intermediate maximum at 150 °C. Catalytic data gained under comparable conditions show that this course of photoluminescence intensity precisely follows the conversion of 2-propanol and the production of acetone. The blue emission is assigned to the radiative recombination of unbound acetone molecules, the n ↔ π* transition of which is selectively excited by a wavelength of 270 nm. These findings open a pathway for studying thermocatalytic processes via in situ photoluminescence spectroscopy, thereby gaining information about the performance of the catalyst and the formation of intermediate products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...