Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
2.
J Immunother Cancer ; 12(5)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782542

RESUMO

BACKGROUND: Neoantigens can serve as targets for T cell-mediated antitumor immunity via personalized neopeptide vaccines. Interim data from our clinical study NCT03715985 showed that the personalized peptide-based neoantigen vaccine EVX-01, formulated in the liposomal adjuvant, CAF09b, was safe and able to elicit EVX-01-specific T cell responses in patients with metastatic melanoma. Here, we present results from the dose-escalation part of the study, evaluating the feasibility, safety, efficacy, and immunogenicity of EVX-01 in addition to anti-PD-1 therapy. METHODS: Patients with metastatic melanoma on anti-PD-1 therapy were treated in three cohorts with increasing vaccine dosages (twofold and fourfold). Tumor-derived neoantigens were selected by the AI platform PIONEER and used in personalized therapeutic cancer peptide vaccines EVX-01. Vaccines were administered at 2-week intervals for a total of three intraperitoneal and three intramuscular injections. The study's primary endpoint was safety and tolerability. Additional endpoints were immunological responses, survival, and objective response rates. RESULTS: Compared with the base dose level previously reported, no new vaccine-related serious adverse events were observed during dose escalation of EVX-01 in combination with an anti-PD-1 agent given according to local guidelines. Two patients at the third dose level (fourfold dose) developed grade 3 toxicity, most likely related to pembrolizumab. Overall, 8 out of the 12 patients had objective clinical responses (6 partial response (PR) and 2 CR), with all 4 patients at the highest dose level having a CR (1 CR, 3 PR). EVX-01 induced peptide-specific CD4+ and/or CD8+T cell responses in all treated patients, with CD4+T cells as the dominating responses. The magnitude of immune responses measured by IFN-γ ELISpot assay correlated with individual peptide doses. A significant correlation between the PIONEER quality score and induced T cell immunogenicity was detected, while better CRs correlated with both the number of immunogenic EVX-01 peptides and the PIONEER quality score. CONCLUSION: Immunization with EVX-01-CAF09b in addition to anti-PD-1 therapy was shown to be safe and well tolerated and elicit vaccine neoantigen-specific CD4+and CD8+ T cell responses at all dose levels. In addition, objective tumor responses were observed in 67% of patients. The results encourage further assessment of the antitumor efficacy of EVX-01 in combination with anti-PD-1 therapy.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Melanoma , Medicina de Precisão , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Metástase Neoplásica , Medicina de Precisão/métodos , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem
5.
Chembiochem ; 24(24): e202300515, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37807669

RESUMO

NSD2 is a histone methyltransferase predominantly catalyzing di-methylation of histone H3 on lysine K36. Increased NSD2 activity due to mutations or fusion-events affecting the gene encoding NSD2 is considered an oncogenic event and a driver in various cancers, including multiple myelomas carrying t(4;14) chromosomal translocations and acute lymphoblastic leukemia's expressing the hyperactive NSD2 mutant E1099 K. Using DNA-encoded libraries, we have identified small molecule ligands that selectively and potently bind to the PWWP1 domain of NSD2, inhibit NSD2 binding to H3K36me2-bearing nucleosomes, but do not inhibit the methyltransferase activity. The ligands were subsequently converted to selective VHL1-recruiting NSD2 degraders and by using one of the most efficacious degraders in cell lines, we show that it leads to NSD2 degradation, decrease in K3 K36me2 levels and inhibition of cell proliferation.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Nucleossomos , Linhagem Celular Tumoral , Metilação
6.
Front Immunol ; 14: 1234912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720215

RESUMO

Introduction: Tumor-specific mutations generate neoepitopes unique to the cancer that can be recognized by the immune system, making them appealing targets for therapeutic cancer vaccines. Since the vast majority of tumor mutations are patient-specific, it is crucial for cancer vaccine designs to be compatible with individualized treatment strategies. Plasmid DNA vaccines have substantiated the immunogenicity and tumor eradication capacity of cancer neoepitopes in preclinical models. Moreover, early clinical trials evaluating personalized neoepitope vaccines have indicated favorable safety profiles and demonstrated their ability to elicit specific immune responses toward the vaccine neoepitopes. Methods: By fusing in silico predicted neoepitopes to molecules with affinity for receptors on the surface of APCs, such as chemokine (C-C motif) ligand 19 (CCL19), we designed an APC-targeting cancer vaccine and evaluated their ability to induce T-cell responses and anti-tumor efficacy in the BALB/c syngeneic preclinical tumor model. Results: In this study, we demonstrate how the addition of an antigen-presenting cell (APC) binding molecule to DNA-encoded cancer neoepitopes improves neoepitope-specific T-cell responses and the anti-tumor efficacy of plasmid DNA vaccines. Dose-response evaluation and longitudinal analysis of neoepitope-specific T-cell responses indicate that combining APC-binding molecules with the delivery of personalized tumor antigens holds the potential to improve the clinical efficacy of therapeutic DNA cancer vaccines. Discussion: Our findings indicate the potential of the APC-targeting strategy to enhance personalized DNA cancer vaccines while acknowledging the need for further research to investigate its molecular mechanism of action and to translate the preclinical results into effective treatments for cancer patients.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Humanos , Neoplasias/genética , Neoplasias/terapia , Células Apresentadoras de Antígenos , Mutação
7.
NPJ Vaccines ; 8(1): 77, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244905

RESUMO

Recent findings have positioned tumor mutation-derived neoepitopes as attractive targets for cancer immunotherapy. Cancer vaccines that deliver neoepitopes via various vaccine formulations have demonstrated promising preliminary results in patients and animal models. In the presented work, we assessed the ability of plasmid DNA to confer neoepitope immunogenicity and anti-tumor effect in two murine syngeneic cancer models. We demonstrated that neoepitope DNA vaccination led to anti-tumor immunity in the CT26 and B16F10 tumor models, with the long-lasting presence of neoepitope-specific T-cell responses in blood, spleen, and tumors after immunization. We further observed that engagement of both the CD4+ and CD8+ T cell compartments was essential to hamper tumor growth. Additionally, combination therapy with immune checkpoint inhibition provided an additive effect, superior to either monotherapy. DNA vaccination offers a versatile platform that allows the encoding of multiple neoepitopes in a single formulation and is thus a feasible strategy for personalized immunotherapy via neoepitope vaccination.

8.
Cancer Res ; 80(17): 3466-3479, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32641411

RESUMO

The mutant protein FOXL2C134W is expressed in at least 95% of adult-type ovarian granulosa cell tumors (AGCT) and is considered to be a driver of oncogenesis in this disease. However, the molecular mechanism by which FOXL2C134W contributes to tumorigenesis is not known. Here, we show that mutant FOXL2C134W acquires the ability to bind SMAD4, forming a FOXL2C134W/SMAD4/SMAD2/3 complex that binds a novel hybrid DNA motif AGHCAHAA, unique to the FOXL2C134W mutant. This binding induced an enhancer-like chromatin state, leading to transcription of nearby genes, many of which are characteristic of epithelial-to-mesenchymal transition. FOXL2C134W also bound hybrid loci in primary AGCT. Ablation of SMAD4 or SMAD2/3 resulted in strong reduction of FOXL2C134W binding at hybrid sites and decreased expression of associated genes. Accordingly, inhibition of TGFß mitigated the transcriptional effect of FOXL2C134W. Our results provide mechanistic insight into AGCT pathogenesis, identifying FOXL2C134W and its interaction with SMAD4 as potential therapeutic targets to this condition. SIGNIFICANCE: FOXL2C134W hijacks SMAD4 and leads to the expression of genes involved in EMT, stemness, and oncogenesis in AGCT, making FOXL2C134W and the TGFß pathway therapeutic targets in this condition. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3466/F1.large.jpg.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box L2/genética , Regulação Neoplásica da Expressão Gênica/genética , Tumor de Células da Granulosa/patologia , Proteínas Smad/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Proteína Forkhead Box L2/metabolismo , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Humanos , Mutação , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo
9.
Mol Cell ; 38(2): 165-78, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20346720

RESUMO

X-linked mental retardation (XLMR) is an inherited disorder that mostly affects males and is caused by mutations in genes located on the X chromosome. Here, we show that the XLMR protein PHF8 and a C. elegans homolog F29B9.2 catalyze demethylation of di- and monomethylated lysine 9 of histone H3 (H3K9me2/me1). The PHD domain of PHF8 binds to H3K4me3 and colocalizes with H3K4me3 at transcription initiation sites. Furthermore, PHF8 interacts with another XMLR protein, ZNF711, which binds to a subset of PHF8 target genes, including the XLMR gene JARID1C. Of interest, the C. elegans PHF8 homolog is highly expressed in neurons, and mutant animals show impaired locomotion. Taken together, our results functionally link the XLMR gene PHF8 to two other XLMR genes, ZNF711 and JARID1C, indicating that MR genes may be functionally linked in pathways, causing the complex phenotypes observed in patients developing MR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Histona Desmetilases/genética , Humanos , Masculino , Metilação , Dados de Sequência Molecular , Mutação , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
Nat Cell Biol ; 10(9): 1051-61, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19160485

RESUMO

The Myc-associated zinc-finger protein, Miz1, is a negative regulator of cell proliferation and induces expression of the cell-cycle inhibitors p15(Ink4b) and p21(Cip1). Here we identify the ribosomal protein L23 as a negative regulator of Miz1-dependent transactivation. L23 exerts this function by retaining nucleophosmin, an essential co-activator of Miz1 required for Miz1-induced cell-cycle arrest, in the nucleolus. Mutant forms of nucleophosmin found in acute myeloid leukaemia fail to co-activate Miz1 and re-localize it to the cytosol. As L23 is encoded by a direct target gene of Myc, this regulatory circuit may provide a feedback mechanism that links translation of Myc target genes and cell growth to Miz1-dependent cell-cycle arrest.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Ribossômicas/metabolismo , Alelos , Animais , Proliferação de Células , Retroalimentação Fisiológica , Células HeLa , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Nucleofosmina , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/química , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos
11.
Genes Dev ; 21(5): 525-30, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17344414

RESUMO

The p16INK4A and p14ARF proteins, encoded by the INK4A-ARF locus, are key regulators of cellular senescence, yet the mechanisms triggering their up-regulation are not well understood. Here, we show that the ability of the oncogene BMI1 to repress the INK4A-ARF locus requires its direct association and is dependent on the continued presence of the EZH2-containing Polycomb-Repressive Complex 2 (PRC2) complex. Significantly, EZH2 is down-regulated in stressed and senescing populations of cells, coinciding with decreased levels of associated H3K27me3, displacement of BMI1, and activation of transcription. These results provide a model for how the INK4A-ARF locus is activated and how Polycombs contribute to cancer.


Assuntos
Senescência Celular , Proteínas de Ligação a DNA/metabolismo , Genes p16 , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Inibidor p16 de Quinase Dependente de Ciclina/genética , Regulação para Baixo , Embrião de Mamíferos/citologia , Proteína Potenciadora do Homólogo 2 de Zeste , Fibroblastos/citologia , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Células-Tronco/metabolismo , Proteína Supressora de Tumor p14ARF/genética
12.
Nat Cell Biol ; 7(1): 30-41, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15580267

RESUMO

The transcription factor Miz1 is required for DNA-damage-induced cell-cycle arrest. We have now identified 14-3-3eta as a gene that inhibits Miz1 function through interaction with its DNA binding domain. Binding of 14-3-3eta to Miz1 depends on phosphorylation by Akt and regulates the recovery of cells from arrest after DNA damage. Miz1 has two functions in response to DNA damage: first, it is required for upregulation of a large group of genes, a function that is regulated by c-Myc, but not by 14-3-3eta; second, Miz1 represses the expression of many genes in response to DNA damage in an Akt- and 14-3-3eta-regulated manner.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Biblioteca Gênica , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Ligação Proteica/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Fatores de Transcrição/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...