Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Aging Cell ; 23(5): e14108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408164

RESUMO

Histones serve as a major carrier of epigenetic information in the form of post-translational modifications which are vital for controlling gene expression, maintaining cell identity, and ensuring proper cellular function. Loss of histones in the aging genome can drastically impact the epigenetic landscape of the cell leading to altered chromatin structure and changes in gene expression profiles. In this study, we investigated the impact of age-related changes on histone levels and histone acetylation in the retinal pigment epithelium (RPE) and retina of mice. We observed a global reduction of histones H1, H2A, H2B, H3, and H4 in aged RPE/choroid but not in the neural retina. Transcriptomic analyses revealed significant downregulation of histones in aged RPE/choroid including crucial elements of the histone locus body (HLB) complex involved in histone pre-mRNA processing. Knockdown of HINFP, a key HLB component, in human RPE cells induced histone loss, senescence, and the upregulation of senescence-associated secretory phenotype (SASP) markers. Replicative senescence and chronological aging in human RPE cells similarly resulted in progressive histone loss and acquisition of the SASP. Immunostaining of human retina sections revealed histone loss in RPE with age. Acetyl-histone profiling in aged mouse RPE/choroid revealed a specific molecular signature with loss of global acetyl-histone levels, including H3K14ac, H3K56ac, and H4K16ac marks. These findings strongly demonstrate histone loss as a unique feature of RPE aging and provide critical insights into the potential mechanisms linking histone dynamics, cellular senescence, and aging.


Assuntos
Envelhecimento , Histonas , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Histonas/metabolismo , Animais , Acetilação , Camundongos , Envelhecimento/metabolismo , Humanos , Senescência Celular , Camundongos Endogâmicos C57BL
2.
Mol Ther ; 29(7): 2281-2293, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744470

RESUMO

Abnormal cholesterol/lipid homeostasis is linked to neurodegenerative conditions such as age-related macular degeneration (AMD), which is a leading cause of blindness in the elderly. The most prevalent form, termed "dry" AMD, is characterized by pathological cholesterol accumulation beneath the retinal pigment epithelial (RPE) cell layer and inflammation-linked degeneration in the retina. We show here that the cholesterol-regulating microRNA miR-33 was elevated in the RPE of aging mice. Expression of the miR-33 target ATP-binding cassette transporter (ABCA1), a cholesterol efflux pump genetically linked to AMD, declined reciprocally in the RPE with age. In accord, miR-33 modulated ABCA1 expression and cholesterol efflux in human RPE cells. Subcutaneous delivery of miR-33 antisense oligonucleotides (ASO) to aging mice and non-human primates fed a Western-type high fat/cholesterol diet resulted in increased ABCA1 expression, decreased cholesterol accumulation, and reduced immune cell infiltration in the RPE cell layer, accompanied by decreased pathological changes to RPE morphology. These findings suggest that miR-33 targeting may decrease cholesterol deposition and ameliorate AMD initiation and progression.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Inflamação/terapia , Degeneração Macular/terapia , MicroRNAs/antagonistas & inibidores , Fenótipo , Epitélio Pigmentado da Retina/metabolismo , Animais , Inflamação/etiologia , Inflamação/patologia , Macaca fascicularis , Degeneração Macular/etiologia , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética
3.
Data Brief ; 32: 106076, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32885002

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease), a lethal pediatric neurodegenerative disease without cure, often presents with vision impairment and characteristic ophthalmoscopic features including focal areas of hyper-autofluorescence. In the associated research article "Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium" (Zhong et al., 2020) [1], we reported ophthalmoscopic observations of focal autofluorescent lesions or puncta in the Cln3Δex7/8 mouse retina at as young as 8 month old. In this data article, we performed differential interference contrast and confocal imaging analyses in all retinal layers to localize and characterize these autofluorescent lesions, including their spectral characteristics and morphology. We further studied colocalization of these autofluorescent lesions with the JNCL marker mitochondrial ATP synthase F0 sub-complex subunit C and various established retinal cell type markers.

4.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165883, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32592935

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.


Assuntos
Cegueira/genética , Glicoproteínas de Membrana/deficiência , Lipofuscinoses Ceroides Neuronais/genética , Epitélio Pigmentado da Retina/patologia , Animais , Atrofia/genética , Atrofia/patologia , Autofagia , Cegueira/patologia , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Humanos , Lisossomos/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Chaperonas Moleculares/genética , Mutação , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/patologia , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura
5.
Ann N Y Acad Sci ; 1371(1): 55-67, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26748992

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL; also known as CLN3 disease) is a devastating neurodegenerative lysosomal storage disorder and the most common form of Batten disease. Progressive visual and neurological symptoms lead to mortality in patients by the third decade. Although ceroid-lipofuscinosis, neuronal 3 (CLN3) has been identified as the sole disease gene, the biochemical and cellular bases of JNCL and the functions of CLN3 are yet to be fully understood. As severe ocular pathologies manifest early in disease progression, the retina is an ideal tissue to study in the efforts to unravel disease etiology and design therapeutics. There are significant discrepancies in the ocular phenotypes between human JNCL and existing murine models, impeding investigations on the sequence of events occurring during the progression of vision impairment. This review focuses on current understanding of vision loss in JNCL and discusses future research directions toward molecular dissection of the pathogenesis of the disease and associated vision problems in order to ultimately improve the quality of patient life and cure the disease.


Assuntos
Cegueira/complicações , Lipofuscinoses Ceroides Neuronais/complicações , Animais , Modelos Animais de Doenças , Olho/patologia , Humanos , Doenças por Armazenamento dos Lisossomos/complicações
6.
Adv Exp Med Biol ; 854: 39-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427391

RESUMO

Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major component of this system and serve as a unique control of the chromatin remodeling process. With a multitude of targeted HDAC inhibitors now available, their use in both basic science and clinical studies has widened substantially. In the field of ocular biology, there are data to suggest that HDAC inhibition may suppress neovascularization and may be a possible treatment for retinitis pigmentosa and dry age-related macular degeneration (AMD). However, the effects of these inhibitors on cell survival and chemokine expression in the chorioretinal tissues remain very unclear. Here, we review the multifaceted biology of HDAC activity and pharmacologic inhibition while offering further insight into the importance of this epigenetic pathway in retinal degenerations. Our laboratory investigations aim to open translational avenues to advance dry AMD therapeutics while exploring the role of acetylation on inflammatory gene expression in the aging and degenerating retina.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Degeneração Retiniana/prevenção & controle , Acetilação/efeitos dos fármacos , Animais , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/prevenção & controle , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
7.
Dev Ophthalmol ; 55: 46-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26501209

RESUMO

Within the past several decades, a brigade of dedicated researchers from around the world has provided essential insights into the critical niche of immune-mediated inflammation in the pathogenesis of age-related macular degeneration (AMD). Yet, the question has lingered as to whether disease-initiating events are more or less dependent on isolated immune-related responses, unimpeded inflammation, endogenous pathways of age-related cell senescence and oxidative stress, or any of the other numerous molecular derangements that have been identified in the natural history of AMD. There is now an abundant cache of data signifying immune system activation as an impetus in the pathogenesis of this devastating condition. Furthermore, recent rigorous investigations have revealed multiple inciting factors, including several important complement-activating components, thus creating a new array of disease-modulating targets for the research and development of molecular therapeutic interventions. While the precise in vivo effects of complement activation and inhibition in the progression and treatment of AMD remain to be determined, ongoing clinical trials of the first generation of complement-targeted therapeutics are hoped to yield critical data on the contribution of this pathway to the disease process.


Assuntos
Ativação do Complemento/fisiologia , Inativadores do Complemento/farmacologia , Doenças Retinianas/fisiopatologia , Humanos , Doenças Retinianas/terapia
8.
Cell Rep ; 11(11): 1686-93, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26074074

RESUMO

Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton's reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.


Assuntos
Elementos Alu , Proteínas de Transporte/metabolismo , Ferro/toxicidade , Epitélio Pigmentado da Retina/metabolismo , Animais , Proteínas de Transporte/genética , Caspase 1/genética , Caspase 1/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Inflamassomos/metabolismo , Ferro/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Ribonuclease III/genética , Ribonuclease III/metabolismo
9.
Curr Ophthalmol Rep ; 2(1): 14-19, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25110625

RESUMO

Age related macular degeneration (AMD) is a complex, multifactorial disease that has yet to be completely understood. Significant efforts in the basic and clinical sciences have unveiled numerous areas which appear to be critical in the pathogenesis of this disease. The alternative complement pathway, immune cell activation, and autoimmunity are all emerging as important themes to the suspected immunologic origins of this disease. Advancement toward a complete understanding of these processes is important in development of new techniques for disease monitoring and treatment.

11.
Proc Natl Acad Sci U S A ; 109(34): 13781-6, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869729

RESUMO

Deficient expression of the RNase III DICER1, which leads to the accumulation of cytotoxic Alu RNA, has been implicated in degeneration of the retinal pigmented epithelium (RPE) in geographic atrophy (GA), a late stage of age-related macular degeneration that causes blindness in millions of people worldwide. Here we show increased extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation in the RPE of human eyes with GA and that RPE degeneration in mouse eyes and in human cell culture induced by DICER1 depletion or Alu RNA exposure is mediated via ERK1/2 signaling. Alu RNA overexpression or DICER1 knockdown increases ERK1/2 phosphorylation in the RPE in mice and in human cell culture. Alu RNA-induced RPE degeneration in mice is rescued by intravitreous administration of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1, but not by inhibitors of other MAP kinases such as p38 or JNK. These findings reveal a previously unrecognized function of ERK1/2 in the pathogenesis of GA and provide a mechanistic basis for evaluation of ERK1/2 inhibition in treatment of this disease.


Assuntos
Regulação Enzimológica da Expressão Gênica , Degeneração Macular/enzimologia , Degeneração Macular/terapia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Humanos , Camundongos , Fosforilação , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais
12.
Cell ; 149(4): 847-59, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22541070

RESUMO

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Assuntos
Elementos Alu , RNA Helicases DEAD-box/metabolismo , Atrofia Geográfica/imunologia , Atrofia Geográfica/patologia , Inflamassomos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas de Transporte/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Epitélio Pigmentado da Retina/patologia , Receptores Toll-Like/metabolismo
13.
Mol Ther ; 20(1): 101-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988875

RESUMO

The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these "naked" siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , RNA Interferente Pequeno/toxicidade , Degeneração Retiniana/induzido quimicamente , Receptor 3 Toll-Like/metabolismo , Animais , Caspase 3/metabolismo , Morte Celular/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
15.
Nature ; 471(7338): 325-30, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21297615

RESUMO

Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.


Assuntos
Elementos Alu/genética , RNA Helicases DEAD-box/deficiência , Degeneração Macular/genética , Degeneração Macular/patologia , RNA/genética , RNA/metabolismo , Ribonuclease III/deficiência , Animais , Morte Celular , Sobrevivência Celular , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos Antissenso , Fenótipo , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ribonuclease III/genética , Ribonuclease III/metabolismo
16.
Ophthalmologica ; 224 Suppl 1: 16-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20714177

RESUMO

Retinal vascular disease is the most common cause of macular edema (ME). While there are several etiologies of vascular compromise and subsequent macular leakage, diabetic retinopathy is the most prevalent and continues to challenge ophthalmologists and frustrate patients due to its refractory nature. In response to this epidemic, diabetic ME (DME) along with cystoid ME (CME) have been areas of active investigation both in the clinic and the laboratory. Several decades of basic science research have revealed a growing and complex array of cytokine growth factors and proinflammatory mediators which are capable of inciting the cellular changes that result in accumulation of fluid within the retina. Much of this new molecular foundation provides the current and fundamental scaffold for understanding the pathologic process of ME while simultaneously identifying potential therapeutic targets. Whereas CME has classically been treated with corticosteroids and nonsteroidal antiinflammatory drugs, recent clinical studies have demonstrated improved visual outcomes for DME treatment with light focal/grid laser, corticosteroids and anti-vascular endothelial growth factor antibodies. Yet, each of these treatments has differential effects on the multifactorial mechanisms of ME. This article reviews the anatomical, cellular and molecular derangements associated with ME and highlights specific pathways targeted by current treatments.


Assuntos
Anti-Inflamatórios/uso terapêutico , Terapia a Laser/métodos , Doenças Retinianas , Vasos Retinianos/patologia , Humanos , Prognóstico , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Doenças Retinianas/terapia
18.
Nat Med ; 15(9): 1023-30, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668192

RESUMO

Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessel growth can lead to myriad diseases. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessel growth has not to our knowledge been previously described. We report the existence of a splice variant of the gene encoding vascular endothelial growth factor receptor-2 (Vegfr-2) that encodes a secreted form of the protein, designated soluble Vegfr-2 (sVegfr-2), that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c function. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without affecting blood vasculature. Administration of sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 thus acts as a molecular uncoupler of blood and lymphatic vessels; modulation of sVegfr-2 might have therapeutic effects in treating lymphatic vascular malformations, transplantation rejection and, potentially, tumor lymphangiogenesis and lymphedema (pages 993-994).


Assuntos
Linfangiogênese/genética , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Processamento Alternativo , Animais , Animais Recém-Nascidos , Sequência de Bases , Córnea/irrigação sanguínea , Córnea/crescimento & desenvolvimento , Córnea/metabolismo , DNA Complementar/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator C de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência
19.
Nature ; 460(7252): 225-30, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19525930

RESUMO

Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.


Assuntos
Degeneração Macular/diagnóstico , Degeneração Macular/terapia , Receptores CCR3/antagonistas & inibidores , Receptores CCR3/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL11/antagonistas & inibidores , Quimiocina CCL11/metabolismo , Quimiocina CCL24/antagonistas & inibidores , Quimiocina CCL24/metabolismo , Quimiocina CCL26 , Quimiocinas CC/antagonistas & inibidores , Quimiocinas CC/metabolismo , Corioide/irrigação sanguínea , Corioide/citologia , Corioide/metabolismo , Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos , Ligantes , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pontos Quânticos , Receptores CCR3/análise , Receptores CCR3/genética , Receptores CCR3/imunologia , Retina/efeitos dos fármacos , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia
20.
Proc Natl Acad Sci U S A ; 106(17): 7137-42, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19359485

RESUMO

Neovascularization in response to tissue injury consists of the dual invasion of blood (hemangiogenesis) and lymphatic (lymphangiogenesis) vessels. We reported recently that 21-nt or longer small interfering RNAs (siRNAs) can suppress hemangiogenesis in mouse models of choroidal neovascularization and dermal wound healing independently of RNA interference by directly activating Toll-like receptor 3 (TLR3), a double-stranded RNA immune receptor, on the cell surface of blood endothelial cells. Here, we show that a 21-nt nontargeted siRNA suppresses both hemangiogenesis and lymphangiogenesis in mouse models of neovascularization induced by corneal sutures or hindlimb ischemia as efficiently as a 21-nt siRNA targeting vascular endothelial growth factor-A. In contrast, a 7-nt nontargeted siRNA, which is too short to activate TLR3, does not block hemangiogenesis or lymphangiogenesis in these models. Exposure to 21-nt siRNA, which we demonstrate is not internalized unless cell-permeating moieties are used, triggers phosphorylation of cell surface TLR3 on lymphatic endothelial cells and induces apoptosis. These findings introduce TLR3 activation as a method of jointly suppressing blood and lymphatic neovascularization and simultaneously raise new concerns about the undesirable effects of siRNAs on both circulatory systems.


Assuntos
Vasos Linfáticos/metabolismo , Neovascularização Fisiológica , RNA Interferente Pequeno/genética , Receptor 3 Toll-Like/metabolismo , Animais , Apoptose , Proliferação de Células , Células Endoteliais/citologia , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Camundongos , Fosforilação , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...