Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Regul Toxicol Pharmacol ; : 105648, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772524

RESUMO

Inhalation is a critical route through which substances can exert adverse effects in humans; therefore, it is important to characterize the potential effects that inhaled substances may have on the human respiratory tract by using fit for purpose, reliable, and human relevant testing tools. In regulatory toxicology testing, rats have primarily been used to assess the effects of inhaled substances as they-being mammals-share similarities in structure and function of the respiratory tract with humans. However, questions about inter-species differences impacting the predictability of human effects have surfaced. Disparities in macroscopic anatomy, microscopic anatomy, or physiology, such as breathing mode (e.g., nose-only versus oronasal breathing), airway structure (e.g., complexity of the nasal turbinates), cell types and location within the respiratory tract, and local metabolism may impact inhalation toxicity testing results. This review shows that these key differences describe uncertainty in the use of rat data to predict human effects and supports an opportunity to harness modern toxicology tools and a detailed understanding of the human respiratory tract to develop testing approaches grounded in human biology. Ultimately, as the regulatory purpose is protecting human health, there is a need for testing approaches based on human biology and mechanisms of toxicity.

2.
Regul Toxicol Pharmacol ; 149: 105614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574841

RESUMO

The United States Environmental Protection Agency (USEPA) uses the lethal dose 50% (LD50) value from in vivo rat acute oral toxicity studies for pesticide product label precautionary statements and environmental risk assessment (RA). The Collaborative Acute Toxicity Modeling Suite (CATMoS) is a quantitative structure-activity relationship (QSAR)-based in silico approach to predict rat acute oral toxicity that has the potential to reduce animal use when registering a new pesticide technical grade active ingredient (TGAI). This analysis compared LD50 values predicted by CATMoS to empirical values from in vivo studies for the TGAIs of 177 conventional pesticides. The accuracy and reliability of the model predictions were assessed relative to the empirical data in terms of USEPA acute oral toxicity categories and discrete LD50 values for each chemical. CATMoS was most reliable at placing pesticide TGAIs in acute toxicity categories III (>500-5000 mg/kg) and IV (>5000 mg/kg), with 88% categorical concordance for 165 chemicals with empirical in vivo LD50 values ≥ 500 mg/kg. When considering an LD50 for RA, CATMoS predictions of 2000 mg/kg and higher were found to agree with empirical values from limit tests (i.e., single, high-dose tests) or definitive results over 2000 mg/kg with few exceptions.


Assuntos
Simulação por Computador , Praguicidas , Relação Quantitativa Estrutura-Atividade , Testes de Toxicidade Aguda , United States Environmental Protection Agency , Animais , Medição de Risco , Praguicidas/toxicidade , Dose Letal Mediana , Ratos , Administração Oral , Testes de Toxicidade Aguda/métodos , Estados Unidos , Reprodutibilidade dos Testes
3.
ALTEX ; 41(2): 179-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629803

RESUMO

When The Principles of Humane Experimental Technique was published in 1959, authors William Russell and Rex Burch had a modest goal: to make researchers think about what they were doing in the laboratory - and to do it more humanely. Sixty years later, their groundbreaking book was celebrated for inspiring a revolution in science and launching a new field: The 3Rs of alternatives to animal experimentation. On November 22, 2019, some pioneering and leading scientists and researchers in the field gathered at the Johns Hopkins Bloomberg School of Public Health in Bal-timore for the 60 Years of the 3Rs Symposium: Lessons Learned and the Road Ahead. The event was sponsored by the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the Foundation for Chemistry Research and Initiatives, the Alternative Research & Development Foundation (ARDF), the American Cleaning Institute (ACI), the International Fragrance Association (IFRA), the Institute for In Vitro Sciences (IIVS), John "Jack" R. Fowle III, and the Society of Toxicology (SoT). Fourteen pres-entations shared the history behind the groundbreaking publication, international efforts to achieve its aims, stumbling blocks to progress, as well as remarkable achievements. The day was a tribute to Russell and Burch, and a testament to what is possible when people from many walks of life - science, government, and industry - work toward a common goal.


William Russell and Rex Burch published their book The Principles of Humane Experimental Technique in 1959. The book encouraged researchers to replace animal experiments where it was possible, to refine experiments with animals in order to reduce their suffering, and to reduce the number of animals that had to be used for experiments to the minimum. Sixty years later, a group of pioneering and leading scientists and researchers in the field gathered to share how the publi­cation came about and how the vision inspired international collaborations and successes on many different levels including new laws. The paper includes an overview of important milestones in the history of alternatives to animal experimentation.


Assuntos
Experimentação Animal , Alternativas aos Testes com Animais , Animais , Alternativas aos Testes com Animais/métodos , Bem-Estar do Animal , Projetos de Pesquisa
4.
Front Toxicol ; 6: 1321857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482198

RESUMO

Introduction: Skin sensitization, which leads to allergic contact dermatitis, is a key toxicological endpoint with high occupational and consumer prevalence. This study optimized several in vitro assays listed in OECD skin sensitization test guidelines for use on a quantitative high-throughput screening (qHTS) platform and performed in silico model predictions to assess the skin sensitization potential of prioritized compounds from the Tox21 10K compound library. Methods: First, we screened the entire Tox21 10K compound library using a qHTS KeratinoSensTM (KS) assay and built a quantitative structure-activity relationship (QSAR) model based on the KS results. From the qHTS KS screening results, we prioritized 288 compounds to cover a wide range of structural chemotypes and tested them in the solid phase extraction-tandem mass spectrometry (SPE-MS/MS) direct peptide reactivity assay (DPRA), IL-8 homogeneous time-resolved fluorescence (HTRF) assay, CD86 and CD54 surface expression in THP1 cells, and predicted in silico sensitization potential using the OECD QSAR Toolbox (v4.5). Results: Interpreting tiered qHTS datasets using a defined approach showed the effectiveness and efficiency of in vitro methods. We selected structural chemotypes to present this diverse chemical collection and to explore previously unidentified structural contributions to sensitization potential. Discussion: Here, we provide a skin sensitization dataset of unprecedented size, along with associated tools, and analysis designed to support chemical assessments.

5.
J Cheminform ; 16(1): 19, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378618

RESUMO

The rapid increase of publicly available chemical structures and associated experimental data presents a valuable opportunity to build robust QSAR models for applications in different fields. However, the common concern is the quality of both the chemical structure information and associated experimental data. This is especially true when those data are collected from multiple sources as chemical substance mappings can contain many duplicate structures and molecular inconsistencies. Such issues can impact the resulting molecular descriptors and their mappings to experimental data and, subsequently, the quality of the derived models in terms of accuracy, repeatability, and reliability. Herein we describe the development of an automated workflow to standardize chemical structures according to a set of standard rules and generate two and/or three-dimensional "QSAR-ready" forms prior to the calculation of molecular descriptors. The workflow was designed in the KNIME workflow environment and consists of three high-level steps. First, a structure encoding is read, and then the resulting in-memory representation is cross-referenced with any existing identifiers for consistency. Finally, the structure is standardized using a series of operations including desalting, stripping of stereochemistry (for two-dimensional structures), standardization of tautomers and nitro groups, valence correction, neutralization when possible, and then removal of duplicates. This workflow was initially developed to support collaborative modeling QSAR projects to ensure consistency of the results from the different participants. It was then updated and generalized for other modeling applications. This included modification of the "QSAR-ready" workflow to generate "MS-ready structures" to support the generation of substance mappings and searches for software applications related to non-targeted analysis mass spectrometry. Both QSAR and MS-ready workflows are freely available in KNIME, via standalone versions on GitHub, and as docker container resources for the scientific community. Scientific contribution: This work pioneers an automated workflow in KNIME, systematically standardizing chemical structures to ensure their readiness for QSAR modeling and broader scientific applications. By addressing data quality concerns through desalting, stereochemistry stripping, and normalization, it optimizes molecular descriptors' accuracy and reliability. The freely available resources in KNIME, GitHub, and docker containers democratize access, benefiting collaborative research and advancing diverse modeling endeavors in chemistry and mass spectrometry.

6.
Cutan Ocul Toxicol ; 43(1): 58-68, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905558

RESUMO

Many sectors have seen complete replacement of the in vivo rabbit eye test with reproducible and relevant in vitro and ex vivo methods to assess the eye corrosion/irritation potential of chemicals. However, the in vivo rabbit eye test remains the standard test used for agrochemical formulations in some countries. Therefore, two defined approaches (DAs) for assessing conventional agrochemical formulations were developed, using the EpiOcularTM Eye Irritation Test (EIT) [Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 492] and the Bovine Corneal Opacity and Permeability (OECD TG 437; BCOP) test with histopathology. Presented here are the results from testing 29 agrochemical formulations, which were evaluated against the United States Environmental Protection Agency's (EPA) pesticide classification system, and assessed using orthogonal validation, rather than direct concordance analysis with the historical in vivo rabbit eye data. Scientific confidence was established by evaluating the methods and testing results using an established framework that considers fitness for purpose, human biological relevance, technical characterisation, data integrity and transparency, and independent review. The in vitro and ex vivo methods used in the DAs were demonstrated to be as or more fit for purpose, reliable and relevant than the in vivo rabbit eye test. Overall, there is high scientific confidence in the use of these DAs for assessing the eye corrosion/irritation potential of agrochemical formulations.


Assuntos
Opacidade da Córnea , Epitélio Corneano , Humanos , Animais , Bovinos , Coelhos , Olho , Epitélio Corneano/patologia , Agroquímicos/toxicidade , Irritantes/toxicidade , Opacidade da Córnea/induzido quimicamente , Opacidade da Córnea/patologia , Permeabilidade , Alternativas aos Testes com Animais
7.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37669225

RESUMO

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Assuntos
Antivirais , Descoberta de Drogas , Antivirais/farmacologia , Antivirais/uso terapêutico , Bioensaio
8.
Arch Toxicol ; 97(11): 2825-2837, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615678

RESUMO

Critical to the evaluation of non-animal tests are reference data with which to assess their relevance. Animal data are typically used because they are generally standardized and available. However, when regulatory agencies aim to protect human health, human reference data provide the benefit of not having to account for possible interspecies variability. To support the evaluation of non-animal approaches for skin sensitization assessment, we collected data from 2277 human predictive patch tests (HPPTs), i.e., human repeat insult patch tests and human maximization tests, for skin sensitization from 1555 publications. We recorded protocol elements and positive or negative outcomes, developed a scoring system to evaluate each test for reliability, and calculated traditional and non-traditional dose metrics. We also traced each test result back to its original report to remove duplicates. The resulting database, which contains information for 1366 unique substances, was characterized for physicochemical properties, chemical structure categories, and protein binding mechanisms. This database is publicly available on the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods website and in the Integrated Chemical Environment to serve as a resource for additional evaluation of alternative methods and development of new approach methodologies for skin sensitization assessments.


Assuntos
Benchmarking , Pele , Humanos , Testes do Emplastro , Reprodutibilidade dos Testes , Bases de Dados Factuais
9.
Crit Rev Toxicol ; 53(7): 385-411, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37646804

RESUMO

Chemical regulatory authorities around the world require systemic toxicity data from acute exposures via the oral, dermal, and inhalation routes for human health risk assessment. To identify opportunities for regulatory uses of non-animal replacements for these tests, we reviewed acute systemic toxicity testing requirements for jurisdictions that participate in the International Cooperation on Alternative Test Methods (ICATM): Brazil, Canada, China, the European Union, Japan, South Korea, Taiwan, and the USA. The chemical sectors included in our review of each jurisdiction were cosmetics, consumer products, industrial chemicals, pharmaceuticals, medical devices, and pesticides. We found acute systemic toxicity data were most often required for hazard assessment, classification, and labeling, and to a lesser extent quantitative risk assessment. Where animal methods were required, animal reduction methods were typically recommended. For many jurisdictions and chemical sectors, non-animal alternatives are not accepted, but several jurisdictions provide guidance to support the use of test waivers to reduce animal use for specific applications. An understanding of international regulatory requirements for acute systemic toxicity testing will inform ICATM's strategy for the development, acceptance, and implementation of non-animal alternatives to assess the health hazards and risks associated with acute toxicity.

10.
Toxicol In Vitro ; 91: 105630, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315744

RESUMO

Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans. Under this protocol, side-by-side assessments of a commercially available reconstructed human epidermis (RhE) model (EpiDerm-200-X, MatTek), a synthetic barrier membrane (Strat-M, Sigma-Aldrich), and EHS were performed. The skin barrier models were mounted on Franz diffusion cells and the permeation of caffeine, salicylic acid, and testosterone was quantified. Transepidermal water loss (TEWL) and histology of the biological models were also compared. EpiDerm-200-X exhibited native human epidermis-like morphology, including a characteristic stratum corneum, but had an elevated TEWL as compared to EHS. The mean 6 h cumulative permeation of a finite dose (6 nmol/cm2) of caffeine and testosterone was highest in EpiDerm-200-X, followed by EHS and Strat-M. Salicylic acid permeated most in EHS, followed by EpiDerm-200-X and Strat-M. Overall, evaluating novel alternative skin barrier models in the manner outlined herein has the potential to reduce the time from basic science discovery to regulatory impact.


Assuntos
Cafeína , Absorção Cutânea , Humanos , Pele/metabolismo , Epiderme/metabolismo , Ácido Salicílico/metabolismo , Testosterona/metabolismo , Água/metabolismo
11.
Nucleic Acids Res ; 51(W1): W78-W82, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194699

RESUMO

Access to computationally based visualization tools to navigate chemical space has become more important due to the increasing size and diversity of publicly accessible databases, associated compendiums of high-throughput screening (HTS) results, and other descriptor and effects data. However, application of these techniques requires advanced programming skills that are beyond the capabilities of many stakeholders. Here we report the development of the second version of the ChemMaps.com webserver (https://sandbox.ntp.niehs.nih.gov/chemmaps/) focused on environmental chemical space. The chemical space of ChemMaps.com v2.0, released in 2022, now includes approximately one million environmental chemicals from the EPA Distributed Structure-Searchable Toxicity (DSSTox) inventory. ChemMaps.com v2.0 incorporates mapping of HTS assay data from the U.S. federal Tox21 research collaboration program, which includes results from around 2000 assays tested on up to 10 000 chemicals. As a case example, we showcased chemical space navigation for Perfluorooctanoic Acid (PFOA), part of the Per- and polyfluoroalkyl substances (PFAS) chemical family, which are of significant concern for their potential effects on human health and the environment.


Assuntos
Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala , Software , Meio Ambiente
12.
ALTEX ; 40(1): 174-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35867862

RESUMO

New approach methodologies (NAMs) are in vitro, in chemico, and in silico or computational approaches that can potentially be used to reduce animal testing. For NAMs that require laboratory experiments, it is critical that they provide consistent and reliable results. While guidance has been provided on improving the reproducibility of NAMs that require laboratory experiments, there is not yet an overarching technical framework that details how to add measurement quality features into a protocol. In this manuscript, we discuss such a framework and provide a step-by-step process describing how to refine a protocol using basic quality tools. The steps in this framework include 1) conceptual analysis of sources of technical variability in the assay, 2) within-laboratory evaluation of assay performance, 3) statistical data analysis, and 4) determination of method transferability (if needed). While each of these steps has discrete components, they are all inter-related, and insights from any step can influence the others. Following the steps in this framework can help reveal the advantages and limitations of different choices during the design of an assay such as which in-process control measurements to include and how many replicates to use for each control measurement and for each test substance. Overall, the use of this technical framework can support optimizing NAM reproducibility, thereby supporting meeting research and regulatory needs.


Assuntos
Alternativas aos Testes com Animais , Animais , Reprodutibilidade dos Testes
13.
Sci Total Environ ; 855: 158905, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152849

RESUMO

In the real world, individuals are exposed to chemicals from sources that vary over space and time. However, traditional risk assessments based on in vivo animal studies typically use a chemical-by-chemical approach and apical disease endpoints. New approach methodologies (NAMs) in toxicology, such as in vitro high-throughput (HTS) assays generated in Tox21 and ToxCast, can more readily provide mechanistic chemical hazard information for chemicals with no existing data than in vivo methods. In this paper, we establish a workflow to assess the joint action of 41 modeled ambient chemical exposures in the air from the USA-wide National Air Toxics Assessment by integrating human exposures with hazard data from curated HTS (cHTS) assays to identify counties where exposure to the local chemical mixture may perturb a common biological target. We exemplify this proof-of-concept using CYP1A1 mRNA up-regulation. We first estimate internal exposure and then convert the inhaled concentration to a steady state plasma concentration using physiologically based toxicokinetic modeling parameterized with county-specific information on ages and body weights. We then use the estimated blood plasma concentration and the concentration-response curve from the in vitro cHTS assay to determine the chemical-specific effects of the mixture components. Three mixture modeling methods were used to estimate the joint effect from exposure to the chemical mixture on the activity levels, which were geospatially mapped. Finally, a Monte Carlo uncertainty analysis was performed to quantify the influence of each parameter on the combined effects. This workflow demonstrates how NAMs can be used to predict early-stage biological perturbations that can lead to adverse health outcomes that result from exposure to chemical mixtures. As a result, this work will advance mixture risk assessment and other early events in the effects of chemicals.


Assuntos
Bioensaio , Exposição Ambiental , Humanos , Animais , Medição de Risco , Método de Monte Carlo , Exposição Ambiental/análise
14.
Front Pharmacol ; 13: 971296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172177

RESUMO

All-trans retinoic acid (ATRA) gradients determine skeletal patterning morphogenesis and can be disrupted by diverse genetic or environmental factors during pregnancy, leading to fetal skeleton defects. Adverse Outcome Pathway (AOP) frameworks for ATRA metabolism, signaling, and homeostasis allow for the development of new approach methods (NAMs) for predictive toxicology with less reliance on animal testing. Here, a data-driven model was constructed to identify chemicals associated with both ATRA pathway bioactivity and prenatal skeletal defects. The phenotype data was culled from ToxRefDB prenatal developmental toxicity studies and produced a list of 363 ToxRefDB chemicals with altered skeletal observations. Defects were classified regionally as cranial, post-cranial axial, appendicular, and other (unspecified) features based on ToxRefDB descriptors. To build a multivariate statistical model, high-throughput screening bioactivity data from >8,070 chemicals in ToxCast/Tox21 across 10 in vitro assays relevant to the retinoid signaling system were evaluated and compared to literature-based candidate reference chemicals in the dataset. There were 48 chemicals identified for effects on both in vivo skeletal defects and in vitro ATRA pathway targets for computational modeling. The list included 28 chemicals with prior evidence of skeletal defects linked to retinoid toxicity and 20 chemicals without prior evidence. The combination of thoracic cage defects and DR5 (direct repeats of 5 nucleotides for RAR/RXR transactivation) disruption was the most frequently occurring phenotypic and target disturbance, respectively. This data model provides valuable AOP elucidation and validates current mechanistic understanding. These findings also shed light on potential avenues for new mechanistic discoveries related to ATRA pathway disruption and associated skeletal dysmorphogenesis due to environmental exposures.

15.
Arch Toxicol ; 96(11): 2865-2879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987941

RESUMO

Robust and efficient processes are needed to establish scientific confidence in new approach methodologies (NAMs) if they are to be considered for regulatory applications. NAMs need to be fit for purpose, reliable and, for the assessment of human health effects, provide information relevant to human biology. They must also be independently reviewed and transparently communicated. Ideally, NAM developers should communicate with stakeholders such as regulators and industry to identify the question(s), and specified purpose that the NAM is intended to address, and the context in which it will be used. Assessment of the biological relevance of the NAM should focus on its alignment with human biology, mechanistic understanding, and ability to provide information that leads to health protective decisions, rather than solely comparing NAM-based chemical testing results with those from traditional animal test methods. However, when NAM results are compared to historical animal test results, the variability observed within animal test method results should be used to inform performance benchmarks. Building on previous efforts, this paper proposes a framework comprising five essential elements to establish scientific confidence in NAMs for regulatory use: fitness for purpose, human biological relevance, technical characterization, data integrity and transparency, and independent review. Universal uptake of this framework would facilitate the timely development and use of NAMs by the international community. While this paper focuses on NAMs for assessing human health effects of pesticides and industrial chemicals, many of the suggested elements are expected to apply to other types of chemicals and to ecotoxicological effect assessments.


Assuntos
Ecotoxicologia , Praguicidas , Animais , Humanos , Projetos de Pesquisa , Medição de Risco
17.
Chem Res Toxicol ; 35(6): 992-1000, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549170

RESUMO

Computational modeling grounded in reliable experimental data can help design effective non-animal approaches to predict the eye irritation and corrosion potential of chemicals. The National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) has compiled and curated a database of in vivo eye irritation studies from the scientific literature and from stakeholder-provided data. The database contains 810 annotated records of 593 unique substances, including mixtures, categorized according to UN GHS and US EPA hazard classifications. This study reports a set of in silico models to predict EPA and GHS hazard classifications for chemicals and mixtures, accounting for purity by setting thresholds of 100% and 10% concentration. We used two approaches to predict classification of mixtures: conventional and mixture-based. Conventional models evaluated substances based on the chemical structure of its major component. These models achieved balanced accuracy in the range of 68-80% and 87-96% for the 100% and 10% test concentration thresholds, respectively. Mixture-based models, which accounted for all known components in the substance by weighted feature averaging, showed similar or slightly higher accuracy of 72-79% and 89-94% for the respective thresholds. We also noted a strong trend between the pH feature metric calculated for each substance and its activity. Across all the models, the calculated pH of inactive substances was within one log10 unit of neutral pH, on average, while for active substances, pH varied from neutral by at least 2 log10 units. This pH dependency is especially important for complex mixtures. Additional evaluation on an external test set of 673 substances obtained from ECHA dossiers achieved balanced accuracies of 64-71%, which suggests that these models can be useful in screening compounds for ocular irritation potential. Negative predictive value was particularly high and indicates the potential application of these models in a bottom-up approach to identify nonirritant substances.


Assuntos
Irritantes , Neuropatia Óptica Tóxica , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Olho , Humanos , Irritantes/toxicidade , Estados Unidos , United States Environmental Protection Agency
18.
Toxics ; 10(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622645

RESUMO

During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.

19.
Environ Sci Technol ; 56(9): 5620-5631, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446564

RESUMO

Chemical-induced alteration of maternal thyroid hormone levels may increase the risk of adverse neurodevelopmental outcomes in offspring. US federal risk assessments rely almost exclusively on apical endpoints in animal models for deriving points of departure (PODs). New approach methodologies (NAMs) such as high-throughput screening (HTS) and mechanistically informative in vitro human cell-based systems, combined with in vitro to in vivo extrapolation (IVIVE), supplement in vivo studies and provide an alternative approach to calculate/determine PODs. We examine how parameterization of IVIVE models impacts the comparison between IVIVE-derived equivalent administered doses (EADs) from thyroid-relevant in vitro assays and the POD values that serve as the basis for risk assessments. Pesticide chemicals with thyroid-based in vitro bioactivity data from the US Tox21 HTS program were included (n = 45). Depending on the model structure used for IVIVE analysis, up to 35 chemicals produced EAD values lower than the POD. A total of 10 chemicals produced EAD values higher than the POD regardless of the model structure. The relationship between IVIVE-derived EAD values and the in vivo-derived POD values is highly dependent on model parameterization. Here, we derive a range of potentially thyroid-relevant doses that incorporate uncertainty in modeling choices and in vitro assay data.


Assuntos
Praguicidas , Animais , Ensaios de Triagem em Larga Escala/métodos , Praguicidas/toxicidade , Medição de Risco/métodos , Glândula Tireoide , Incerteza
20.
ALTEX ; 39(2): 183­206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34874455

RESUMO

Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.


Assuntos
Alternativas aos Testes com Animais , Nanoestruturas , Animais , Nanoestruturas/química , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...