Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652117

RESUMO

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Assuntos
Proteínas de Transporte , Membrana Nuclear , Poro Nuclear , Humanos , Transporte Ativo do Núcleo Celular , Células HeLa , Homeostase , Glicoproteínas de Membrana , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte/metabolismo
2.
EMBO Rep ; 24(6): e56241, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37039032

RESUMO

PLK1 is an important regulator of mitosis whose protein levels and activity fluctuate during the cell cycle. PLK1 dynamically localizes to various mitotic structures to regulate chromosome segregation. However, the signaling pathways linking localized PLK1 activity to its protein stability remain elusive. Here, we identify the Ubiquitin-Binding Protein 2-Like (UBAP2L) that controls both the localization and the protein stability of PLK1. We demonstrate that UBAP2L is a spindle-associated protein whose depletion leads to severe mitotic defects. UBAP2L-depleted cells are characterized by increased PLK1 protein levels and abnormal PLK1 accumulation in several mitotic structures such as kinetochores, centrosomes and mitotic spindle. UBAP2L-deficient cells exit mitosis and enter the next interphase in the presence of aberrant PLK1 kinase activity. The C-terminal domain of UBAP2L mediates its function on PLK1 independently of its role in stress response signaling. Importantly, the mitotic defects of UBAP2L-depleted cells are largely rescued by chemical inhibition of PLK1. Overall, our data suggest that UBAP2L is required to fine-tune the ubiquitin-mediated PLK1 turnover during mitosis as a means to maintain genome fidelity.


Assuntos
Proteínas de Transporte , Ubiquitina , Humanos , Ubiquitina/metabolismo , Proteínas de Transporte/metabolismo , Células HeLa , Proteínas de Ciclo Celular/metabolismo , Mitose , Fuso Acromático/metabolismo , Fosforilação
3.
Cell Rep ; 35(7): 109129, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010649

RESUMO

Mitochondria are highly dynamic organelles subjected to fission and fusion events. During mitosis, mitochondrial fission ensures equal distribution of mitochondria to daughter cells. If and how this process can actively drive mitotic progression remains largely unknown. Here, we discover a pathway linking mitochondrial fission to mitotic progression in mammalian cells. The mitochondrial fission factor (MFF), the main mitochondrial receptor for the Dynamin-related protein 1 (DRP1), is directly phosphorylated by Protein Kinase D (PKD) specifically during mitosis. PKD-dependent MFF phosphorylation is required and sufficient for mitochondrial fission in mitotic but not in interphasic cells. Phosphorylation of MFF is crucial for chromosome segregation and promotes cell survival by inhibiting adaptation of the mitotic checkpoint. Thus, PKD/MFF-dependent mitochondrial fission is critical for the maintenance of genome integrity during cell division.


Assuntos
Proteínas Mitocondriais/genética , Mitose/fisiologia , Proteína Quinase C/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
4.
FASEB J ; 34(9): 12751-12767, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738097

RESUMO

Equal segregation of chromosomes during mitosis ensures euploidy of daughter cells. Defects in this process may result in an imbalance in the chromosomal composition and cellular transformation. Proteolytic and non-proteolytic ubiquitylation pathways ensure directionality and fidelity of mitotic progression but specific mitotic functions of deubiquitylating enzymes (DUBs) remain less studied. Here we describe the role of the DUB ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) in the regulation of chromosome bi-orientation and segregation during mitosis. Downregulation or inhibition of UCHL3 leads to chromosome alignment defects during metaphase. Frequent segregation errors during anaphase are also observed upon inactivation of UCHL3. Mechanistically, UCHL3 interacts with and deubiquitylates Aurora B, the catalytic subunit of chromosome passenger complex (CPC), known to be critically involved in the regulation of chromosome alignment and segregation. UCHL3 does not regulate protein levels of Aurora B or the binding of Aurora B to other CPC subunits. Instead, UCHL3 promotes localization of Aurora B to kinetochores, suggesting its role in the error correction mechanism monitoring bi-orientation of chromosomes during metaphase. Thus, UCHL3 contributes to the regulation of faithful genome segregation and maintenance of euploidy in human cells.


Assuntos
Segregação de Cromossomos , Mitose , Ubiquitina Tiolesterase/fisiologia , Aurora Quinase B/fisiologia , Células HeLa , Humanos , Ubiquitinação
5.
EMBO J ; 39(20): e104467, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706158

RESUMO

Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule-containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.


Assuntos
Núcleo Celular/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acrilatos/farmacologia , Animais , Linhagem Celular , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação para Baixo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Hibridização in Situ Fluorescente , Interfase/genética , Camundongos , Microscopia Eletrônica de Transmissão , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética
6.
Mol Cell Oncol ; 5(2): e1271494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487893

RESUMO

Defects in mitosis can lead to aneuploidy, which is a common feature of human cancers. Spindle Assembly Checkpoint (SAC) controls fidelity of chromosome segregation in mitosis to prevent aneuploidy. The ubiquitin receptor protein Ubiquitin Associated and SH3 Domain Containing B (UBASH3B) was recently found to control SAC silencing and faithful chromosome segregation by relocalizing Aurora B kinase to the mitotic microtubules. Accordingly, loss and gain of function of UBASH3B have strong effects on mitotic progression. Downregulation of UBASH3B prevents SAC satisfaction leading to inhibition of chromosome segregation, mitotic arrest, and cell death. In contrast, increased cellular levels of UBASH3B trigger premature and uncontrolled chromosome segregation. Interestingly, elevated levels of UBASH3B were found in aggressive tumors. Therefore, we raised the question whether the oncogenic potential of UBASH3B is linked to its role in chromosome segregation. Here we show that in cancer cells expressing high levels of UBASH3B and SAC proteins, downregulation of UBASH3B, can further potentiate SAC response inducing mitotic arrest and cell death. Moreover, data mining approaches identified a correlation between mRNA levels of UBASH3B and SAC components in a set of primary patient tumors including kidney and liver carcinomas. Thus, inhibition of UBASH3B may offer an attractive therapeutic perspective for cancers.

7.
Dev Cell ; 36(1): 63-78, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26766443

RESUMO

Mitosis ensures equal segregation of the genome and is controlled by a variety of ubiquitylation signals on substrate proteins. However, it remains unexplored how the versatile ubiquitin code is read out during mitotic progression. Here, we identify the ubiquitin receptor protein UBASH3B as an important regulator of mitosis. UBASH3B interacts with ubiquitylated Aurora B, one of the main kinases regulating chromosome segregation, and controls its subcellular localization but not protein levels. UBASH3B is a limiting factor in this pathway and is sufficient to localize Aurora B to microtubules prior to anaphase. Importantly, targeting Aurora B to microtubules by UBASH3B is necessary for the timing and fidelity of chromosome segregation in human cells. Our findings uncover an important mechanism defining how ubiquitin attachment to a substrate protein is decoded during mitosis.


Assuntos
Aurora Quinase B/metabolismo , Segregação de Cromossomos/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Ubiquitina/metabolismo , Anáfase/fisiologia , Linhagem Celular , Células HeLa , Humanos , Cinetocoros/metabolismo , Fosforilação , Ubiquitinação/fisiologia
8.
Cell Cycle ; 12(14): 2291-6, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24067371

RESUMO

Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22. (1) In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas Culina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Especificidade por Substrato , Ubiquitinação , Quinase 1 Polo-Like
9.
Genes Cancer ; 3(11-12): 697-711, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23634257

RESUMO

Conjugation of ubiquitin (ubiquitination) to substrate proteins is a widespread modification that ensures fidelity of many cellular processes. During mitosis, different dynamic morphological transitions have to be coordinated in a temporal and spatial manner to allow for precise partitioning of the genetic material into two daughter cells, and ubiquitination of key mitotic factors is believed to provide both directionality and fidelity to this process. While directionality can be achieved by a proteolytic type of ubiquitination signal, the fidelity is often determined by various types of ubiquitin conjugation that does not target substrates for proteolysis by the proteasome. An additional level of complexity is provided by various ubiquitin-interacting proteins that act downstream of the ubiquitinated substrate and can serve as "decoders" for the ubiquitin signal. They may, specifically reverse ubiquitin attachment (deubiquitinating enzymes, DUBs) or, act as a receptor for transfer of the ubiquitinated substrate toward downstream signaling components and/or subcellular compartments (ubiquitin-binding proteins, UBPs). In this review, we aim at summarizing the knowledge and emerging concepts about the role of ubiquitin decoders, DUBs, and UBPs that contribute to faithful regulation of mitotic division.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...