Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 178, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268980

RESUMO

BACKGROUND: Chagas disease remains a persistent vector-borne neglected tropical disease throughout the Americas and threatens both human and animal health. Diverse control methods have been used to target triatomine vector populations, with household insecticides being the most common. As an alternative to environmental sprays, host-targeted systemic insecticides (or endectocides) allow for application of chemicals to vertebrate hosts, resulting in toxic blood meals for arthropods (xenointoxication). In this study, we evaluated three systemic insecticide products for their ability to kill triatomines. METHODS: Chickens were fed the insecticides orally, following which triatomines were allowed to feed on the treated chickens. The insecticide products tested included: Safe-Guard® Aquasol (fenbendazole), Ivomec® Pour-On (ivermectin) and Bravecto® (fluralaner). Triatoma gerstaeckeri nymphs were allowed to feed on insecticide-live birds at 0, 3, 7, 14, 28 and 56 days post-treatment. The survival and feeding status of the T. gerstaeckeri insects were recorded and analyzed using Kaplan-Meier curves and logistic regression. RESULTS: Feeding on fluralaner-treated chickens resulted 50-100% mortality in T. gerstaeckeri over the first 14 days post-treatment but not later; in contrast, all insects that fed on fenbendazole- and ivermectin-treated chickens survived. Liquid chromatography tandem mass spectrometry (LC-QQQ) analysis, used to detect the concentration of fluralaner and fenbendazole in chicken plasma, revealed the presence of fluralaner in plasma at 3, 7, and 14 days post-treatment but not later, with the highest concentrations found at 3 and 7 days post-treatment. However, fenbendazole concentration was below the limit of detection at all time points. CONCLUSIONS: Xenointoxication using fluralaner in poultry is a potential new tool for integrated vector control to reduce risk of Chagas disease.


Assuntos
Doença de Chagas , Inseticidas , Triatoma , Animais , Humanos , Galinhas , Ivermectina , Fenbendazol , Insetos Vetores , Doença de Chagas/tratamento farmacológico , Doença de Chagas/veterinária
2.
Exp Biol Med (Maywood) ; 247(17): 1558-1569, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35833540

RESUMO

A major component of aging is chronic, low-grade inflammation, attributable in part by impaired gut barrier function. We previously reported that deletion of ghrelin, a peptidergic hormone released mainly from the gut, exacerbates experimental muscle atrophy in aged mice. In addition, ghrelin has been shown to ameliorate colitis in experimental models of inflammatory bowel disease (IBD), although the role of endogenous ghrelin in host-microbe interactions is less clear. Here, we showed that 22-month-old global ghrelin knockout (Ghrl-/-) mice exhibited significantly increased depressive-like behaviors, while anxiety levels and working memory were similar to littermate wild-type (WT) mice. Furthermore, old Ghrl-/- mice showed significantly increased intestinal permeability to fluorescein isothiocyanate (FITC)-dextran, significantly higher colonic interleukin (IL-1ß) levels, and trends for higher colonic IL-6 and tumor necrosis factor-α (TNF-α) compared to WT mice. Interestingly, young Ghrl-/- and WT mice showed comparable depressive-like behavior and gut permeability, suggesting age-dependent exacerbation in gut barrier dysfunction in Ghrl-/- mice. While fecal short-chain fatty acids levels were comparable between old Ghrl-/- and WT mice, serum metabolome revealed alterations in metabolic cascades including tryptophan metabolism. Specifically, tryptophan and its microbial derivatives indole-3-acetic acid and indole-3-lactic acid were significantly reduced in old Ghrl-/-mice. Furthermore, in an experimental model of dextran sulfate sodium (DSS)-induced colitis, Ghrl-/- mice showed exacerbated disease symptoms, and higher levels of chemoattractant and pro-inflammatory cytokines in the colon. Overall, these data demonstrated that ghrelin deficiency is associated with gut barrier dysfunction, alterations in microbially derived tryptophan metabolites, and increased susceptibility to colitis. These data suggested that endogenous ghrelin contributes to maintaining a healthy host-microbe environment, ultimately impacting on brain function.


Assuntos
Colite Ulcerativa , Colite , Grelina , Triptofano , Animais , Fatores Quimiotáticos/efeitos adversos , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Ácidos Graxos Voláteis , Fluoresceína-5-Isotiocianato/análogos & derivados , Deleção de Genes , Grelina/deficiência , Grelina/genética , Inflamação , Interleucina-6/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
J Nutr Biochem ; 105: 108999, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35346831

RESUMO

Inulin, a soluble dietary fiber, is thought to exert multiple beneficiary effects through promoting growth of bacteria that metabolize the fiber to short-chain fatty acids (SCFAs); however, the effect and efficacy of inulin in aging subjects is unknown. This study aims to systematically evaluate the capacity of SCFAs production and host response in mice of different ages. Male C57BL/6J mice across young (5 months), middle (11 months) and old (26 months) age were subjected to a control diet for 2 weeks, followed by 6 weeks of inulin-containing diet. Inulin-induced increase in fecal butyric acid levels was most prominent in middle-age group compared to other age groups. In addition, inulin-induced increase in fecal propionic acids showed age-dependent decline. Interestingly, the SCFA-producing Roseburia was most abundantly and persistently increased in the middle-age group. Furthermore, inulin intake significantly reduced Firmicutes to Bacteroidetes ratio, and several dysbiotic bacteria associated with pro-inflammatory state. Concomitantly, circulating levels of CXCL1, a chemoattractant for neutrophils, was reduced by inulin intake. Inulin decreased fat mass in all age groups, with middle-aged mice being most responsive to fat-reducing effects of inulin. Moreover, inulin significantly increased energy expenditure and voluntary wheel running in middle-aged mice, but not in old mice. Overall, our data suggest that the efficacy of inulin in altering the microbiome and SCFA production, and the subsequent metabolic response was diminished in old mice, and highlight the importance of including age as a variable in studies determining host-microbe response to diets.


Assuntos
Microbioma Gastrointestinal , Inulina , Adiposidade , Envelhecimento , Animais , Bactérias/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Ácidos Graxos Voláteis/metabolismo , Humanos , Inulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Obesidade/metabolismo
4.
Food Funct ; 12(24): 12751-12764, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34847216

RESUMO

The microbiome plays a major role in polyphenol metabolism, producing metabolites that are bioavailable and potentially more bioactive than the compounds from which they are derived. However, the microbiome can vary among individuals, and especially for those with co-morbidities, such as ulcerative colitis. In subjects with ulcerative colitis, the consequence of a 'dysbiotic' microbiome is characterized by decreased diversity of microbiota that may impact their capability to metabolize polyphenols into bioavailable metabolites. On this premise, the microbiome metabolism of cranberry polyphenols between healthy individuals and those with ulcerative colitis was compared in vitro. Fecal samples from volunteers, with or without diagnosed ulcerative colitis, were cultured anaerobically in the presence of cranberry polyphenols. The resulting metabolites were then quantified via LC-ESI-MS/MS. 16S rRNA metagenomics analysis was also utilized to assess differences in microbiota composition between healthy and ulcerative colitis microbiomes and the modulatory effects of cranberry polyphenols on microbiota composition. Healthy microbiomes produced higher (p < 0.05) concentrations of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone and 3-hydroxyphenylacetic acid in comparison to ulcerative colitis microbiomes. Additionally, healthy microbiomes contained a higher (p < 0.05) abundance of Ruminococcaceae, which could explain their ability to produce higher concentrations of cranberry polyphenol metabolites. Health status and the presence of cranberry polyphenols also significantly impacted the production of several short-chain and branched-chain fatty acids. These results suggest that efficiency of polyphenol metabolism is dependent on microbiota composition and future works should include metabolite data to account for inter-individual differences in polyphenol metabolism.


Assuntos
Colite Ulcerativa/metabolismo , Microbioma Gastrointestinal , Polifenóis/metabolismo , Vaccinium macrocarpon/metabolismo , Adolescente , Adulto , Idoso , Colo/metabolismo , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Adulto Jovem
5.
Mol Nutr Food Res ; 65(20): e2100539, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34406707

RESUMO

SCOPE: This study investigates the mechanism of action and functional effects of coffee extracts in colonic cells, on intestinal stem cell growth, and inhibition of dextran sodium sulfate (DSS)-induced intestinal barrier damage in mice. METHODS AND RESULTS: Aqueous coffee extracts induced Ah receptor (AhR) -responsive CYP1A1, CYP1B1, and UGT1A1 gene expression in colon-derived Caco2 and YAMC cells. Tissue-specific AhR knockout (AhRf/f x Lgr5-GFP-CreERT2 x Villin-Cre), wild-type (Lgr5-CreERT2 x Villin-Cre) mice are sources of stem cell enriched organoids and both coffee extracts and norharman, an AhR-active component of these extracts inhibited stem cell growth. Coffee extracts also inhibit DSS-induced damage to intestinal barrier function and DSS-induced mucosal inflammatory genes such as IL-6 and TGF-ß1 in wild-type (AhR+/+ ) but not AhR-/- mice. In contrast, coffee does not exhibit protective effects in intestinal-specific AhR knockout mice. Coffee extracts also enhanced overall formation of AhR-active microbial metabolites. CONCLUSIONS: In colon-derived cells and in the mouse intestine, coffee induced several AhR-dependent responses including gene expression, inhibition of intestinal stem cell-enriched organoid growth, and inhibition of DSS-induced intestinal barrier damage. We conclude that the anti-inflammatory effects of coffee in the intestine are due, in part, to activation of AhR signaling.


Assuntos
Café , Colo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Células CACO-2 , Colo/metabolismo , Citocromo P-450 CYP1A1/fisiologia , Citocromo P-450 CYP1B1/fisiologia , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Masculino , Camundongos
6.
Artigo em Inglês | MEDLINE | ID: mdl-34040287

RESUMO

Harmful cyanobacterial blooms (cyanoHABs) pose threats to human and animal health due to the production of harmful cyanotoxins. Microcystis aeruginosa is a common cyanobacterium associated with these blooms and is responsible for producing the potent cyclic hepatotoxin microcystin-LR (MC-LR). Concerns over the public health implications of these toxins in water supplies have increased due to rising occurrence of these blooms. High energy electron beam (eBeam) irradiation technology presents a promising strategy for the mitigation of both cyanobacterial cells and cyanotoxins within the water treatment process. However, it is imperative that both cellular and chemical responses to eBeam irradiation are understood to ensure efficient treatment. We sought to investigate the effect of eBeam irradiation on M. aeruginosa cells and MC-LR degradation. Results indicate that doses as low as 2 kGy are lethal to M. aeruginosa cells and induce cell lysis. Even lower doses are required for degradation of the parent MC-LR toxin. However, it was observed that there is a delay in cell lysis after irradiation where M. aeruginosa cells may still be metabolically active and able to synthesize microcystin. These results suggest that eBeam may be suitable for cyanoHAB mitigation in water treatment if employed following cell lysis.

7.
Nutrients ; 13(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920187

RESUMO

Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a "chow-type" nutritionally adequate non-PD. Additional variables within a diet's matrix appear to affect routine indicators or gastrointestinal health.


Assuntos
Comportamento Alimentar/fisiologia , Trato Gastrointestinal/fisiologia , Glicolipídeos/administração & dosagem , Glicoproteínas/administração & dosagem , Proteínas do Leite/administração & dosagem , Proteínas de Soja/administração & dosagem , Ração Animal , Animais , Biomarcadores , Motilidade Gastrointestinal , Gotículas Lipídicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
8.
Aging (Albany NY) ; 13(5): 6330-6345, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33612480

RESUMO

The interplay between microbiota and host metabolism plays an important role in health. Here, we examined the relationship between age, gut microbiome and host serum metabolites in male C57BL/6J mice. Fecal microbiome analysis of 3, 6, 18, and 28 months (M) old mice showed that the Firmicutes/Bacteroidetes ratio was highest in the 6M group; the decrease of Firmicutes in the older age groups suggests a reduced capacity of gut microflora to harvest energy from food. We found age-dependent increase in Proteobacteria, which may lead to altered mucus structure more susceptible to bacteria penetration and ultimately increased intestinal inflammation. Metabolomic profiling of polar serum metabolites at fed state in 3, 12, 18 and 28M mice revealed age-associated changes in metabolic cascades involved in tryptophan, purine, amino acids, and nicotinamide metabolism. Correlation analyses showed that nicotinamide decreased with age, while allantoin and guanosine, metabolites in purine metabolism, increased with age. Notably, tryptophan and its microbially derived compounds indole and indole-3-lactic acid significantly decreased with age, while kynurenine increased with age. Together, these results suggest a significant interplay between bacterial and host metabolism, and gut dysbiosis and altered microbial metabolism contribute to aging.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Metaboloma , Animais , Fezes/microbiologia , Indóis/metabolismo , Cinurenina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Triptofano/metabolismo
9.
Nutrients ; 11(5)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137456

RESUMO

Walnuts contain a complex array of natural compounds and phytochemicals that exhibit a wide range of health benefits, including protection against inflammation and colon cancer. In this study, we assess the effects of dietary supplementation with walnuts on colonic mucosal injury induced in mice by the ulcerogenic agent, dextran sodium sulfate (DSS). C57Bl/6J mice were started on the Total Western Diet supplemented with freshly-ground whole walnuts (0, 3.5, 7 and 14% g/kg) 2 weeks prior to a 5-day DSS treatment and walnut diets were continued throughout the entire experimental period. Mice were examined at 2 days or 10 days after withdrawal of DSS. In a separate study, a discovery-based metabolite profiling analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on fecal samples and colonic mucosa following two weeks of walnut supplementation. Dietary walnut supplementation showed significant effects in the 10-day post-DSS recovery-phase study, in which the extent of ulceration was significantly reduced (7.5% vs. 0.3%, p < 0.05) with 14% walnuts. In the metabolite-profiling analysis, walnuts caused a significant increase in several polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and 9-oxo-10(E),12(E)-octadecadienoic acid (9-oxoODA), as well as kynurenic acid. In colon tissue samples, walnuts caused a significant increase in the levels of S-adenosylhomocysteine (SAH) and betaine, important components of fatty acid ß-oxidation. These metabolite changes may contribute in part to the observed protection against DSS-induced inflammatory tissue injury.


Assuntos
Ração Animal , Colite/prevenção & controle , Colo/metabolismo , Sulfato de Dextrana , Suplementos Nutricionais , Mucosa Intestinal/metabolismo , Juglans , Nozes , Animais , Cromatografia Líquida de Alta Pressão , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/patologia , Modelos Animais de Doenças , Fezes/química , Mucosa Intestinal/patologia , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
10.
Am J Vet Res ; 80(5): 434-440, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31034276

RESUMO

OBJECTIVE: To develop and analytically validate a liquid chromatography-tandem mass spectrometry method for measurement of endogenous trans-4-hydroxy-l-proline concentrations in canine serum and to assess serum trans-4-hydroxy-l-proline concentrations in dogs with chronic hepatitis. SAMPLE: Serum samples obtained from 20 dogs with histopathologically confirmed chronic hepatitis and 20 healthy control dogs. PROCEDURES: A liquid chromatography-tandem mass spectrometry method for quantification of trans-4-hydroxy-l-proline concentration was developed and assessed for analytic sensitivity, linearity, accuracy, precision, and reproducibility. Serum concentration of trans-4-hydroxy-l-proline in dogs with chronic hepatitis and healthy control dogs was measured. RESULTS: Observed-to-expected ratios for dilutional parallelism ranged from 72.7% to 111.5% (mean ± SD, 91.3 ± 19.6%). Intra-assay and interassay coefficients of variation ranged from 2.1% to 3.0% and 3.2% to 5.3%, respectively. Relative error ranged from -2.3% to 7.8%. Trans-4-hydroxy-l-proline concentrations were significantly lower in serum obtained from dogs with chronic hepatitis (median, 0.24 ng/mL; range, 0.06 to 1.84 ng/mL) than in serum obtained from healthy control dogs (median, 0.78 ng/mL; range, 0.14 to 4.90 ng/mL). CONCLUSIONS AND CLINICAL RELEVANCE: The method described here for the quantification of trans-4-hydroxy-l-proline concentration in canine serum was found to be sensitive, specific, precise, accurate, and reproducible. Dogs with chronic hepatitis had significantly lower serum trans-4-hydroxy-l-proline concentrations than did healthy control dogs, possibly as a result of altered hepatic metabolism of amino acids.


Assuntos
Cromatografia Líquida/veterinária , Doenças do Cão/sangue , Hepatite Animal/sangue , Hepatite Crônica/veterinária , Hidroxiprolina/sangue , Espectrometria de Massas em Tandem/veterinária , Animais , Cromatografia Líquida/métodos , Cães , Feminino , Hepatite Crônica/sangue , Masculino , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
11.
Environ Pollut ; 243(Pt A): 637-644, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219589

RESUMO

Occurrence of per- and poly-fluoroalkyl substances (PFASs) in the environment and biota has raised a great concern to public health because these compounds are persistent, bioaccumulative, and toxic. Biodegradation of polyfluoroalkyl substances, particularly long-chain fluorotelomer-based products, can lead to production of various short-chain PFASs, with 5:3 fluorotelomer carboxylic acid (referred as 5:3 FTCA hereafter) as a dominant polyfluoroalkyl metabolite. Perfluoroalkyl acids, particularly perfluorooctanoic acid (PFOA), are toxic and current removal methods are not cost-effective. This study reports the photodegradation of 5:3 FTCA and PFOA using ZnO as a photocatalyst under neutral pH and room temperature conditions. Under long UV wavelength (365 nm), both tetrapod and commercial ZnO can photodegrade 5:3 FTCA. Five removal products-perfluorohexanoic acid, perfluoropentanoic acid, perfluorobutyric acid, 5:2 fluorotelomer carboxylic acid (5:2 FTCA), and inorganic fluoride-were identified, with PFBA and F- as dominant end products. SEM and XPS high-resolution scans on the surface of the utilized ZnO showed less units of CF2 than that in 5:3 FTCA, supporting occurrence of photodegradation of 5:3 FTCA by ZnO. Defluorination of PFOA was not observed with ZnO only, but at pH 5 and in the co-presence of Fe-citrate. PFOA defluorination increased from 0.93% after 3 days of UV light exposure to 3.9% after additional 135 h under direct sunlight exposure. To the authors' best knowledge, this is the first report studying ZnO-catalyzed photodegradation of 5:3 FTCA, and examining the Fe co-addition for PFOA defluorination.


Assuntos
Caprilatos/química , Fluorocarbonos/química , Modelos Químicos , Fotólise , Óxido de Zinco/química , Biodegradação Ambiental , Caproatos , Ácidos Carboxílicos , Fluoretos , Fosfatos
12.
PLoS One ; 10(5): e0127259, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000959

RESUMO

Limited information is available regarding the metabolic consequences of intestinal dysbiosis in dogs with acute onset of diarrhea. The aim of this study was to evaluate the fecal microbiome, fecal concentrations of short-chain fatty acids (SCFAs), as well as serum and urine metabolites in healthy dogs (n=13) and dogs with acute diarrhea (n=13). The fecal microbiome, SCFAs, and serum/urine metabolite profiles were characterized by 454-pyrosequencing of the 16S rRNA genes, GC/MS, and untargeted and targeted metabolomics approach using UPLC/MS and HPLC/MS, respectively. Significantly lower bacterial diversity was observed in dogs with acute diarrhea in regards to species richness, chao1, and Shannon index (p=0.0218, 0.0176, and 0.0033; respectively). Dogs with acute diarrhea had significantly different microbial communities compared to healthy dogs (unweighted Unifrac distances, ANOSIM p=0.0040). While Bacteroidetes, Faecalibacterium, and an unclassified genus within Ruminococcaceae were underrepresented, the genus Clostridium was overrepresented in dogs with acute diarrhea. Concentrations of fecal propionic acid were significantly decreased in acute diarrhea (p=0.0033), and were correlated to a decrease in Faecalibacterium (ρ=0.6725, p=0.0332). The predicted functional gene content of the microbiome (PICRUSt) revealed overrepresentations of genes for transposase enzymes as well as methyl accepting chemotaxis proteins in acute diarrhea. Serum concentrations of kynurenic acid and urine concentrations of 2-methyl-1H-indole and 5-Methoxy-1H-indole-3-carbaldehyde were significantly decreased in acute diarrhea (p=0.0048, 0.0185, and 0.0330, respectively). These results demonstrate that the fecal dysbiosis present in acute diarrhea is associated with altered systemic metabolic states.


Assuntos
Diarreia/veterinária , Doenças do Cão/microbiologia , Disbiose/veterinária , Animais , Diarreia/microbiologia , Cães , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Masculino , Metaboloma , Metabolômica , Microbiota
13.
Nat Commun ; 5: 5492, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25411059

RESUMO

Metabolites produced by the intestinal microbiota are potentially important physiological modulators. Here we present a metabolomics strategy that models microbiota metabolism as a reaction network and utilizes pathway analysis to facilitate identification and characterization of microbiota metabolites. Of the 2,409 reactions in the model, ~53% do not occur in the host, and thus represent functions dependent on the microbiota. The largest group of such reactions involves amino-acid metabolism. Focusing on aromatic amino acids, we predict metabolic products that can be derived from these sources, while discriminating between microbiota- and host-dependent derivatives. We confirm the presence of 26 out of 49 predicted metabolites, and quantify their levels in the caecum of control and germ-free mice using two independent mass spectrometry methods. We further investigate the bioactivity of the confirmed metabolites, and identify two microbiota-generated metabolites (5-hydroxy-L-tryptophan and salicylate) as activators of the aryl hydrocarbon receptor.


Assuntos
Ceco/metabolismo , Metaboloma , Microbiota , Animais , Ceco/microbiologia , Espectrometria de Massas , Camundongos
14.
Curr Opin Biotechnol ; 26: 85-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24679263

RESUMO

The intestinal microbiota plays an important role in a wide range of functions and whole body homeostasis. Recent advances have linked microbiota dysbiosis to conditions ranging from Crohn's disease to cancer. The restoration or strengthening of the intestinal microbiota through diet-based approaches such as probiotics and prebiotics has been proposed for combating the onset or progression of these diseases. In this review, we highlight the importance of postbiotics for the manipulation of the intestinal microbiota, with special emphasis on systems biology computational tools and targeted metabolomics for the rational discovery and identification of these bioactive molecules. The identification of novel postbiotics and the pathways responsible for their production should lead to improved mechanistic understanding of the role that specific probiotics, prebiotics, and postbiotics have in restoring intestinal microbiota composition and function.


Assuntos
Dieta , Intestinos/microbiologia , Microbiota/fisiologia , Probióticos/metabolismo , Biologia de Sistemas/métodos , Animais , Humanos , Metabolômica , Prebióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...