Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400376, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654587

RESUMO

While there has been a growing interest on the concept of Circular Economy (CE), its correlation with sustainability remains controversial. In this work, the combination of Statistical Entropy Analysis (SEA) and Life Cycle Assessment (LCA) is proposed as a new methodology to evaluate recycling processes from the perspective of materials circularity and environmental impacts using a Li-ion battery recycling process as a case study. This work addresses the need of quantitative circularity indicators, as SEA evaluates the concentration of materials at a systems level, while LCA measures the environmental impact of recycling processes in comparison with virgin raw materials production. It was found that process optimization points can be found by simultaneously accounting for materials recovery and the LCA categories of global warming potential, ozone depletion and mineral resource scarcity. Furthermore, a strong correlation was found for the first time between the recovery of critical elements and the environmental impact of raw materials production. The proposed methodology thus offers a robust analysis of a product lifecycle that aids in its design and optimization from the CE perspective.

2.
iScience ; 26(11): 108237, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953950

RESUMO

Recycling processes are an important stage in the raw material life cycle, as it enables the transition from a linear economy into a circular one. However, the currently available indicators of productivity in recycling technologies respond to the needs of a linear economy. In this work, a parameter called "exentropy" is proposed, offering the possibility to simultaneously account for mass preservation and the energy efficiency of transformative stages. As a proof-of-concept of this indicator, the analysis of a lithium-ion battery recycling process under various concentrations of a leaching reagent (i.e., 0.1M, 1M, and 2M) is presented. It is shown that, when the energy or mass dimensions are considered independently, the processes considered optimal may have conflicting characteristics. In contrast, the multi-dimensional analysis identified the process option offering the best compromise for both material and energy preservation, an aspect closer to the goals of the circular economy.

3.
iScience ; 26(10): 107782, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731608

RESUMO

A new method based on thermogravimetric analysis was developed to measure the graphite content in battery material mixture. This approach exploits the thermochemical reduction of cathodic Li-transition metal oxides with anodic graphite at elevated temperatures under an inert atmosphere. Using known composition artificial mixtures, a linear correlation between cathode mass loss and sample graphite content was observed. The method was validated using industrial black mass samples and characterized traditionally to estimate and rationalize potential error sources. Thermal degradation profiles of industrial battery waste reflected those in the artificial system, demonstrating its applicability. This work also demonstrates that thermogravimetric degradation profiles can distinguish between a cathode consisting of single or multiple Li-metal oxides. Although accuracy depends on active component mixture content and impurities, it is demonstrated that the method is useful for a fast graphite content estimation. Unlike other graphite characterization techniques, the method proposed is simple and inexpensive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA