Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2071, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824319

RESUMO

At low temperatures and high magnetic fields, electron and hole spins in an organic light-emitting diode become polarized so that recombination preferentially forms molecular triplet excited-state species. For low device currents, magnetoelectroluminescence perfectly follows Boltzmann activation, implying a virtually complete polarization outcome. As the current increases, the magnetoelectroluminescence effect is reduced because spin polarization is suppressed by the reduction in carrier residence time within the device. Under these conditions, an additional field-dependent process affecting the spin-dependent recombination emerges, possibly related to the build-up of triplet excitons and their interaction with free charge carriers. Suppression of the EL alone does not prove electronic spin polarization. We therefore probe changes in the spin statistics of recombination directly in a dual singlet-triplet emitting material, which shows a concomitant rise in phosphorescence intensity as fluorescence is suppressed. Finite spin-orbit coupling in these materials gives rise to a microscopic distribution in effective g-factors of electrons and holes, Δg, i.e., a distribution in Larmor frequencies. This Δg effect in the pair, which mixes singlet and triplet, further suppresses singlet-exciton formation at high fields in addition to thermal spin polarization of the individual carriers.

2.
Nano Lett ; 17(12): 7914-7919, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29182344

RESUMO

Gold nanoparticles emit broad-band upconverted luminescence upon irradiation with pulsed infrared laser radiation. Although the phenomenon is widely observed, considerable disagreement still exists concerning the underlying physics, most notably over the applicability of concepts such as multiphoton absorption, inelastic scattering, and interband vs intraband electronic transitions. Here, we study single particles and small clusters of particles by employing a spectrally resolved power-law analysis of the irradiation-dependent emission as a sensitive probe of these physical models. Two regimes of emission are identified. At low irradiance levels of kW/cm2, the emission follows a well-defined integer-exponent power law suggestive of a multiphoton process. However, at higher irradiance levels of several kW/cm2, the nonlinearity exponent itself depends on the photon energy detected, a tell-tale signature of a radiating heated electron gas. We show that in this regime, the experiments are incompatible with both interband transitions and inelastic light scattering as the cause of the luminescence, whereas they are compatible with the notion of luminescence linked to intraband transitions.

3.
J Phys Chem Lett ; 7(22): 4802-4808, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27788014

RESUMO

Metal-free dual singlet-triplet organic light-emitting diode (OLED) emitters can provide direct insight into spin statistics, spin correlations and spin relaxation phenomena, through a comparison of fluorescence to phosphorescence intensity. Remarkably, such materials can also function at room temperature, exhibiting phosphorescence lifetimes of several milliseconds. Using electroluminescence, quantum chemistry, and electron paramagnetic resonance spectroscopy, we investigate the effect of the conjugation pathway on radiative and nonradiative relaxation of the triplet state in phenazine-based compounds and demonstrate that the contribution of the phenazine nπ* excited state is crucial to enabling phosphorescence.

4.
Phys Rev Lett ; 115(6): 067403, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296132

RESUMO

Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

5.
Phys Rev Lett ; 113(26): 266805, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615373

RESUMO

Nonlinear continuum generation from diffraction-limited hot spots in rough silver films exhibits striking narrow-band intensity resonances in excitation wavelength. Time-domain Fourier spectroscopy uncovers how these resonances arise due to the formation of a "plasmon staircase", a discreteness in the fundamental oscillation of the plasmon excitations responsible for generating the white-light continuum. Whereas multiple scattering from discrete antennas can be invoked to explain hot spot formation in random assemblies of isolated particles, hot spots in films of fused nanoparticles are excited by interfering propagating surface plasmons, launched by scattering from individual nanoparticle antennas. For closed films, discrete propagating plasmons interact coherently over distances of tens of microns to pump the hot spot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...