Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731585

RESUMO

The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL-1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL-1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g-1 and was 8.9 mg g-1 and 7.7 mg g-1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Vitamina B 12 , Vitamina B 12/química , Vitamina B 12/análise , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro/química , Limite de Detecção , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068948

RESUMO

The aim of this research was to obtain new polymer composites with a silicone rubber matrix, having favorable mechanical and functional properties. They contained admixtures in the amount of 10% by weight of expanded graphite (EG) or birch bark (BB). Additionally, some composites contained magnetic particles in the form of carbonyl iron in the amount of 20% by weight. The tensile strength, water absorption, frost resistance, surface contact angle, and free surface energy were examined. Microscopic images were taken using the SEM method and the content of some elements in selected microareas was determined using the EDXS method. In the study, a constant magnetic field with magnetic induction B was used, by means of which the properties and structure of polymer composites were modified. Scientific research in the field of polymers is the driving force behind the progress of civilization. Smart materials are able to respond to external stimuli, such as magnetic fields, with significant changes in their properties. The magnetic field affects not only chemical reactions, but also the crystallographic structure and physicochemical properties of the final products. Owing to their unique properties, such materials can be used in the space industry, automotive industry, or electrical engineering.


Assuntos
Polímeros , Elastômeros de Silicone , Polímeros/química , Elastômeros de Silicone/química , Fenômenos Químicos , Água , Campos Magnéticos
3.
Biomimetics (Basel) ; 8(1)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36810386

RESUMO

Biomaterial research has led to revolutionary healthcare advances. Natural biological macromolecules can impact high-performance, multipurpose materials. This has prompted the quest for affordable healthcare solutions, with a focus on renewable biomaterials with a wide variety of applications and ecologically friendly techniques. Imitating their chemical compositions and hierarchical structures, bioinspired based materials have elevated rapidly over the past few decades. Bio-inspired strategies entail extracting fundamental components and reassembling them into programmable biomaterials. This method may improve its processability and modifiability, allowing it to meet the biological application criteria. Silk is a desirable biosourced raw material due to its high mechanical properties, flexibility, bioactive component sequestration, controlled biodegradability, remarkable biocompatibility, and inexpensiveness. Silk regulates temporo-spatial, biochemical and biophysical reactions. Extracellular biophysical factors regulate cellular destiny dynamically. This review examines the bioinspired structural and functional properties of silk material based scaffolds. We explored silk types, chemical composition, architecture, mechanical properties, topography, and 3D geometry to unlock the body's innate regenerative potential, keeping in mind the novel biophysical properties of silk in film, fiber, and other potential forms, coupled with facile chemical changes, and its ability to match functional requirements for specific tissues.

4.
Materials (Basel) ; 15(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36556687

RESUMO

Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.

5.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234072

RESUMO

The aim of the research presented in the paper was to obtain new polymer composites with strong functional properties on the Epidian 5 epoxy resin matrix. The polymer composites contained admixtures of expanded graphite, powder graphite, birch bark containing botulin, and yellow dextrin in set amounts of 20% by weight. Their various mechanical parameters and physicochemical properties were investigated. The research involved determining the effect of a constant magnetic field with magnetic induction B, under the influence of which the parameters and properties of polymer composites have been changed. For example, in a constant magnetic field with an induction of B = 0.5 T there was an increase in the hardness of the composite with an admixture of birch bark from 24.01 to 26.96 N/mm2 (12.3%), or in the composite with the addition of yellow dextrin from 26.12 to 29.93 N/mm2 (14.6%). It was also found, for example, that the water absorption of the resin itself decreased from 0.18% to 0.13%, and the composite with graphite powder from 0.48% to 0.46%. Changes in these parameters, often beneficial, may be important in terms of potential application of those new materials in industry as alternatives.

6.
Materials (Basel) ; 15(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806615

RESUMO

The influence of filler particle size on selected physicochemical and functional properties of polymer composites was analyzed. The following test was carried out for the system: the bisphenol A glycerolate (1 glycerol/phenol) di-methacrylate (BPA.DM) was subjected to UV-polymerization in bulk with N-vinyl-2-pyrrolidone (NVP) as a polymer matrix and talc with particle sizes ranging from ≤8 to 710 µm as a non-toxic and cheap mineral filler. An effective method of preparing cross-linked polymeric composites with talc was developed. The obtained samples were subjected to structural analysis and the thermal, mechanical and flammability properties were assessed. It has been empirically confirmed that the talc particles are incorporated into the composite structure. However, with increasing particle size, the composite heterogeneity increases. In the case of the developed method of sample production, homogeneous systems were obtained for particles in the ≤8-250 µm range. The surface roughness of the samples correlates directly with the size of talc particles. The value of Young's modulus during the axial stretching of samples decreases with the increasing size of talc particles. For the composites containing ≤15 and ≤35 µm talc particles, the highest values were obtained under bending conditions. There was no equivocal effect of particle size on the composites' swelling in water. The addition of talc reduces the flame height and intensity slightly. The biggest difference was obtained for the composites containing relatively large talc particles. It was proved that the selected properties of polymer composites can be controlled depending on the size of the talc particles.

7.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614687

RESUMO

Complex composite materials are used in many areas of dentistry. Initially, chemically hardened materials were also used, and in this group nanohybrid composites are highly valued. They are often used today, mainly for the direct reconstruction of damaged hard tooth tissue materials for rebuilding damaged tissues using indirect adhesive techniques. The research was conducted to determine the mechanical properties of materials with nanofillers. The article focuses on methods of important test methods for dental prosthetics: resilience, abrasion, wear test, impact strength, hardness, SEM, and chemical analysis. As part of this work, five different series of hybrid composites with nano-fillers were tested. The mechanical properties of composites, such as compressive strength, microhardness, flexural strength, and modulus of elasticity, depend mainly on the type, particle size, and amount of filler introduced. The obtained test results showed that the type and amount of nanofiller have a significant influence on the mechanical and tribological properties. The introduction of nanofillers allowed us to obtain higher mechanical properties compared to classic materials discussed by other researchers. The study observed a change in vibrations in the IR spectrum, which allowed a comparison of the organic structures of the studied preparations.

8.
Materials (Basel) ; 14(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885585

RESUMO

This paper presents the synthesis and physicochemical characterization of a new hybrid composite. Its main goals are evaluating the structure and studying the thermal and mechanical properties of the crosslinked polymeric materials based on varying chemical properties of the compounds. As an organic crosslinking monomer, bisphenol A glycerolate diacrylate (BPA.GDA) was used. Trimethoxyvinylsilane (TMVS) and N-vinyl-2-pyrrolidone (NVP) were used as comonomers and active diluents. The inorganic fraction was the silica in the form of nanoparticles (NANOSiO2). The hybrid composites were obtained by the bulk polymerization method using the UV initiator Irqacure 651 with a constant weight ratio of the tetrafunctional monomer BPA.GDA to TMVS or NVP (7:3 wt.%) and different wt.% of silica nanoparticles (0, 1, 3%). The proper course of polymerization was confirmed by the ATR/FTIR spectroscopy and SEM EDAX analysis. In the composites spectra the signals correspond to the C=O groups from NVP at 1672-1675 cm-1, and the vibrations of Si-O-C and Si-O-Si groups at 1053-1100 cm-1 from TMVS and NANOSiO2 are visible. Thermal stabilities of the obtained composites were studied by a differential scanning calorimetry DSC. Compared to NVP the samples with TMVS degraded in one stage (422.6-425.3 °C). The NVP-derived materials decomposed in three stages (three endothermic effects on the DSC curves). The addition of NANOSiO2 increases the temperature of composites maximum degradation insignificantly. Additionally, the Shore D hardness test was carried out with original metrological measurements of changes in diameter after indentation in relation to the type of material. The accuracy analysis of the obtained test results was based on a comparative analysis of graphical curves obtained from experimental tests. The values of the changes course of similarity in the examined factors, represented by those of characteristic coefficients were determined based on the Fréchet's theory.

9.
Materials (Basel) ; 14(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300725

RESUMO

In this paper, polymer composites based on polylactide (PLA) and epoxy resin (Epidian 5) were studied in terms of the influence of magnetic induction on their changes in physicochemical properties. The composites contained admixtures in the form of magnetite (Fe3O4) and crystalline cellulose (Avicel PH-1010) in the amount of 10%, 20%, and 30% by weight and starch in the amount of 10%. The admixtures of cellulose and starch were intended to result in the composites becoming biodegradable biopolymers to some extent. Changes in physical and chemical properties due to the impact of a constant magnetic field with a magnetic induction value B = 0.5 T were observed. The changes were observed during tests of tensile strength, bending, impact strength, water absorbency, frost resistance, chemical resistance to acids and bases, as well as through SEM microscopy and with studies of the composition of the composites that use the EDS method and of their structure with the XRD method. Based on the obtained results, it was found that the magnetic induction value changes the properties of composites. This therefore acts as one method of receiving new alternative materials, the degradation of which in the environment would take far less time.

10.
Materials (Basel) ; 14(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918857

RESUMO

In the present work, extraction with a solvent (cold acetone) was used to extract the assimilation pigments from spinach leaves. Then, the sorption capacity of selected plastics granules (polyvinyl chloride-PVC, polypropylene-PP, polyethylene-PE of different densities) was tested for the selective isolation of chlorophylls. Quantification of chlorophylls by HPLC (Zorbax Eclipse XDB-C18 column, the mobile phase: Acetonitrile/methanol/ethyl acetate 6:2:2, v/v) was based on chlorophyll-a content as the most common chlorophyll. The performed experiments prove that PVC containing electronegative chlorine exhibits favorable interactions toward chlorophyll by creating stable molecular complexes. The Fourier Transform Raman Spectroscopy (FT-Raman) and the molecular modeling were used to elucidate the structure of the created complexes. The optimal extraction requirements, the mass of sorbent, water-acetone ratio, time, and the composition of the elution solvent were all established. The optimized extraction conditions ensured a maximum extraction yield of chlorophylls of 98%. The chlorophyll-rich sorbent was re-extracted by acetone, leading to the recovery of 91% of chlorophylls in one step, adding the possibility of its re-use. The proposed effective and ecological method of obtaining the green dye from plants is cheap, simple, and efficient, avoiding organic solvents, utilizing the most widely used synthetic polymers in the world, being products difficult for utilization. The possibility to remove chosen fungicides cyprodinil, chlorothalonil, and thiabendazone from plant extract by PVC was also examined. The described method proposes a new application of synthetic polymers, which meets the criteria of sustainable green chemistry, simultaneously reaching the growing demand for pure natural compounds in the pharmaceutical and food industries.

11.
Polymers (Basel) ; 13(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562178

RESUMO

The synthesis, thermal, and mechanical properties of epoxy resin composites incorporating waste fibers of hemp were studied. Five different systems with increasing quantity of the eco-filler were obtained. For the synthesis of polymeric materials, the commercial epoxy resins Epidian® 5 and triethylenetetramine (TETA) were applied as crosslinking agents. The composites were obtained based on the polyaddition reaction of an amine group with an epoxide ring. ATR/FT-IR (Attenuated Total Reflection-Fourier Transform Infrared) analysis was used to confirm the chemical structure of the composites and the course of curing processes. Moreover, the influence of the eco-friendly components on the mechanical properties was determined, while thermal properties of the materials were investigated by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Dynamic mechanical studies (DMA) and Shore hardness tests of the obtained polymers were also carried out. The DSC curves and DMA analysis revealed that all materials were characterized by a similar glass transition range. Furthermore, the DMA and hardness measurements of the composites demonstrated an increasing elasticity with the increase in the amount of eco-filler present in the compositions.

12.
Molecules ; 25(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334041

RESUMO

In this paper flammability tests and detailed investigations of lignin-containing polymer composites' properties are presented. Composites were obtained using bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.GDA), ethylene glycol dimethacrylate (EGDMA), and kraft lignin (lignin alkali, L) during UV curing. In order to evaluate the influence of lignin modification and the addition of flame retardant compounds on the thermal resistance of the obtained biocomposites, flammability tests have been conducted. After the modification with phosphoric acid (V) lignin, as well as diethyl vinylphosphonate, were used as flame retardant additives. The changes in the chemical structures (ATR-FTIR), as well as the influence of the different additives on the hardness, thermal (TG) and mechanical properties were discussed in detail. The samples after the flammability test were also studied to assess their thermal destruction.


Assuntos
Acrilatos/química , Retardadores de Chama/análise , Lignina/química , Dureza
13.
Polymers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438552

RESUMO

The preparation and the thermal and mechanical characteristics of lignin-containing polymer biocomposites were studied. Bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.GDA) was used as the main monomer, and butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) or styrene (St) was used as the reactive diluent. Unmodified lignin (L) or lignin modified with methacryloyl chloride (L-M) was applied as an ecofriendly component. The influences of the lignin, its modification, and of the type of reactive diluent on the properties of the composites were investigated. In the biocomposites with unmodified lignin, the lignin mainly acted as a filler, and it seemed that interactions occurred between the hydroxyl groups of the lignin and the carbonyl groups of the acrylates. When methacrylated lignin was applied, it seemed to take part in the creation of a polymer network. When styrene was added as a reactive diluent, the biocomposites had a more homogeneous structure, and their thermal resistance was higher than those with acrylate monomers. The use of lignin and its methacrylic derivative as a component in polymer composites promotes sustainability in the plastics industry and can have a positive influence on environmental problems related to waste generation.

14.
Materials (Basel) ; 13(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033128

RESUMO

In the presented work the influence of different 3MgO·4SiO2·H2O (talc) contents in polypropylene samples on the structure, hardness, elasticity, and friction of the surface layer was investigated. The talc content ranged from 0 to 25 wt.%, and all the samples were obtained in the same conditions by the injection molding process. The analysis of the microstructure was performed by X-ray diffraction. Changes in the hardness and elasticity were determined for three different depths (300, 800, and 4000 nm) using an ultra nano tester. For the purpose of the examination of the friction properties of the obtained compounds, a nano-scratch tester was applied. Increasing the talc content caused growth in the indentation modulus and hardness values. Simultaneously, an effect of decreasing hardness and elastic modulus with increasing indentation depth was observed. The smallest effect size was observed for 25 wt.% talc content, which might suggest that talc addition increased the homogeneity of the observed composites. Scratch tests showed increasing scratch resistance along with increasing talc content for both constant and progressive loads. The growth in talc concentration led to a decrease in the degree of the polypropylene (PP) crystallinity of the surface layer. The exfoliation process occurred in PP composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...