Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 70(3): 430-450, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34626143

RESUMO

Kallikrein related peptidase 6 (Klk6) is a secreted serine protease highly expressed in oligodendrocytes and implicated in demyelinating conditions. To gain insights into the significance of Klk6 to oligodendrocyte biology, we investigated the impact of global Klk6 gene knockout on CNS developmental myelination using the spinal cord of male and female mice as a model. Results demonstrate that constitutive loss of Klk6 expression accelerates oligodendrocyte differentiation developmentally, including increases in the expression of myelin proteins such as MBP, PLP and CNPase, in the number of CC-1+ mature oligodendrocytes, and myelin thickness by the end of the first postnatal week. Co-ordinate elevations in the pro-myelinating signaling pathways ERK and AKT, expression of fatty acid 2-hydroxylase, and myelin regulatory transcription factor were also observed in the spinal cord of 7d Klk6 knockouts. LC/MS/MS quantification of spinal cord lipids showed sphingosine and sphingomyelins to be elevated in Klk6 knockouts at the peak of myelination. Oligodendrocyte progenitor cells (OPCs)-derived from Klk6 knockouts, or wild type OPCs-treated with a Klk6 inhibitor (DFKZ-251), also showed increased MBP and PLP. Moreover, inhibition of Klk6 in OPC cultures enhanced brain derived neurotrophic factor-driven differentiation. Altogether, these findings suggest that oligodendrocyte-derived Klk6 may operate as an autocrine or paracrine rheostat, or brake, on pro-myelinating signaling serving to regulate myelin homeostasis developmentally and in the adult. These findings document for the first time that inhibition of Klk6 globally, or specifically in oligodendrocyte progenitors, is a strategy to increase early stages of oligodendrocyte differentiation and myelin production in the CNS.


Assuntos
Calicreínas/metabolismo , Oligodendroglia , Espectrometria de Massas em Tandem , Animais , Diferenciação Celular/fisiologia , Feminino , Calicreínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
2.
J Neurosci ; 41(41): 8644-8667, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34493542

RESUMO

Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD+)-depleting enzyme in the CNS. Altered NAD+ metabolism is linked to both high fat consumption and multiple sclerosis (MS). Here, we identify increased CD38 expression in the male mouse spinal cord following chronic high fat consumption, after focal toxin [lysolecithin (LL)]-mediated demyelinating injury, and in reactive astrocytes within active MS lesions. We demonstrate that CD38 catalytically inactive mice are substantially protected from high fat-induced NAD+ depletion, oligodendrocyte loss, oxidative damage, and astrogliosis. A CD38 inhibitor, 78c, increased NAD+ and attenuated neuroinflammatory changes induced by saturated fat applied to astrocyte cultures. Conditioned media from saturated fat-exposed astrocytes applied to oligodendrocyte cultures impaired myelin protein production, suggesting astrocyte-driven indirect mechanisms of oligodendrogliopathy. In cerebellar organotypic slice cultures subject to LL-demyelination, saturated fat impaired signs of remyelination effects that were mitigated by concomitant 78c treatment. Significantly, oral 78c increased counts of oligodendrocytes and remyelinated axons after focal LL-induced spinal cord demyelination. Using a RiboTag approach, we identified a unique in vivo brain astrocyte translatome profile induced by 78c-mediated CD38 inhibition in mice, including decreased expression of proinflammatory astrocyte markers and increased growth factors. Our findings suggest that a high-fat diet impairs oligodendrocyte survival and differentiation through astrocyte-linked mechanisms mediated by the NAD+ase CD38 and highlights CD38 inhibitors as potential therapeutic candidates to improve myelin regeneration.SIGNIFICANCE STATEMENT Myelin disturbances and oligodendrocyte loss can leave axons vulnerable, leading to permanent neurologic deficits. The results of this study suggest that metabolic disturbances, triggered by consumption of a diet high in fat, promote oligodendrogliopathy and impair myelin regeneration through astrocyte-linked indirect nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms. We demonstrate that restoring NAD+ levels via genetic inactivation of CD38 can overcome these effects. Moreover, we show that therapeutic inactivation of CD38 can enhance myelin regeneration. Together, these findings point to a new metabolic targeting strategy positioned to improve disease course in multiple sclerosis and other conditions in which the integrity of myelin is a key concern.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Astrócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , NAD+ Nucleosidase/fisiologia , Regeneração Nervosa/fisiologia , Remielinização/fisiologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/genética , Animais , Cerebelo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética , Técnicas de Cultura de Órgãos
3.
Glia ; 69(9): 2111-2132, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33887067

RESUMO

Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.


Assuntos
Receptor PAR-1 , Traumatismos da Medula Espinal , Animais , Astrócitos/metabolismo , Feminino , Camundongos , Neurônios/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo
4.
Neurobiol Dis ; 152: 105294, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549720

RESUMO

Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colesterol/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Receptor PAR-1/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crescimento Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia
5.
Neurobiol Dis ; 141: 104934, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376475

RESUMO

A diet high in fat and sucrose (HFHS), the so-called Western diet promotes metabolic syndrome, a significant co-morbidity for individuals with spinal cord injury (SCI). Here we demonstrate that the spinal cord of mice consuming HFHS expresses reduced insulin-like growth factor 1 (IGF-1) and its receptor and shows impaired tricarboxylic acid cycle function, reductions in PLP and increases in astrogliosis, all prior to SCI. After SCI, Western diet impaired sensorimotor and bladder recovery, increased microgliosis, exacerbated oligodendrocyte loss and reduced axon sprouting. Direct and indirect neural injury mechanisms are suggested since HFHS culture conditions drove parallel injury responses directly and indirectly after culture with conditioned media from HFHS-treated astrocytes. In each case, injury mechanisms included reductions in IGF-1R, SIRT1 and PGC-1α and were prevented by metformin. Results highlight the potential for a Western diet to evoke signs of neural insulin resistance and injury and metformin as a strategy to improve mechanisms of neural neuroprotection and repair.


Assuntos
Astrócitos/metabolismo , Dieta Ocidental , Metabolismo Energético , Traumatismos da Medula Espinal/metabolismo , Animais , Feminino , Homeostase , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Traumatismos da Medula Espinal/patologia
6.
J Neurosci ; 40(7): 1483-1500, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31911460

RESUMO

Myelin loss limits neurological recovery and myelin regeneration and is critical for restoration of function. We recently discovered that global knock-out of the thrombin receptor, also known as Protease Activated Receptor 1 (PAR1), accelerates myelin development. Here we demonstrate that knocking out PAR1 also promotes myelin regeneration. Outcomes in two unique models of myelin injury and repair, that is lysolecithin or cuprizone-mediated demyelination, showed that PAR1 knock-out in male mice improves replenishment of myelinating cells and remyelinated nerve fibers and slows early axon damage. Improvements in myelin regeneration in PAR1 knock-out mice occurred in tandem with a skewing of reactive astrocyte signatures toward a prorepair phenotype. In cell culture, the promyelinating effects of PAR1 loss of function are consistent with possible direct effects on the myelinating potential of oligodendrocyte progenitor cells (OPCs), in addition to OPC-indirect effects involving enhanced astrocyte expression of promyelinating factors, such as BDNF. These findings highlight previously unrecognized roles of PAR1 in myelin regeneration, including integrated actions across the oligodendrocyte and astroglial compartments that are at least partially mechanistically linked to the powerful BDNF-TrkB neurotrophic signaling system. Altogether, findings suggest PAR1 may be a therapeutically tractable target for demyelinating disorders of the CNS.SIGNIFICANCE STATEMENT Replacement of oligodendroglia and myelin regeneration holds tremendous potential to improve function across neurological conditions. Here we demonstrate Protease Activated Receptor 1 (PAR1) is an important regulator of the capacity for myelin regeneration across two experimental murine models of myelin injury. PAR1 is a G-protein-coupled receptor densely expressed in the CNS, however there is limited information regarding its physiological roles in health and disease. Using a combination of PAR1 knock-out mice, oligodendrocyte monocultures and oligodendrocyte-astrocyte cocultures, we demonstrate blocking PAR1 improves myelin production by a mechanism related to effects across glial compartments and linked in part to regulatory actions toward growth factors such as BDNF. These findings set the stage for development of new clinically relevant myelin regeneration strategies.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Regeneração Nervosa/efeitos dos fármacos , Receptor PAR-1/antagonistas & inibidores , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/patologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Quelantes/toxicidade , Técnicas de Cocultura , Cobre , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Perfilação da Expressão Gênica , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Receptor PAR-1/deficiência , Receptor PAR-1/fisiologia , Teste de Desempenho do Rota-Rod , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165630, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816440

RESUMO

Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified. Moreover, deficits in TCA cycle intermediates and mitochondrial respiration were observed in the chronic HFD spinal cord tissue. Oligodendrocytes are known to be particularly vulnerable to oxidative damage, and we observed increased markers of oxidative stress in both the brain and spinal cord of HFD-fed mice. We additionally identified that increased apoptotic cell death signaling is underway in oligodendrocytes from mice chronically fed a HFD. When cultured under high saturated fat conditions, oligodendrocytes decreased both mitochondrial function and differentiation. Overall, our findings show that HFD-related changes in metabolic regulators, decreased mitochondrial function, and oxidative stress contribute to a loss of myelinating cells. These studies identify HFD consumption as a key modifiable lifestyle factor for improved myelin integrity in the adult central nervous system and in addition new tractable metabolic targets for myelin protection and repair strategies.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Síndrome Metabólica/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Oligodendroglia/patologia , Estresse Oxidativo/fisiologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Oxirredução
8.
Sci Rep ; 8(1): 9360, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921916

RESUMO

Thrombin is frequently increased in the CNS after injury yet little is known regarding its effects on neural stem cells. Here we show that the subventricular zone (SVZ) of adult mice lacking the high affinity receptor for thrombin, proteinase activated receptor 1 (PAR1), show increased numbers of Sox2+ and Ki-67+ self-renewing neural stem cells (NSCs) and Olig2+ oligodendrocyte progenitors. SVZ NSCs derived from PAR1-knockout mice, or treated with a PAR1 small molecule inhibitor (SCH79797), exhibited enhanced capacity for self-renewal in vitro, including increases in neurosphere formation and BrdU incorporation. PAR1-knockout SVZ monolayer cultures contained more Nestin, NG2+ and Olig2+ cells indicative of enhancements in expansion and differentiation towards the oligodendrocyte lineage. Cultures of NSCs lacking PAR1 also expressed higher levels of myelin basic protein, proteolipid protein and glial fibrillary acidic protein upon differentiation. Complementing these findings, the corpus callosum and anterior commissure of adult PAR1-knockout mice contained greater numbers of Olig2+ progenitors and CC1+ mature oligodendrocytes. Together these findings highlight PAR1 inhibition as a means to expand adult SVZ NSCs and to promote an increased number of mature myelinating oligodendrocytes in vivo that may be of particular benefit in the context of neural injury where PAR1 agonists such as thrombin are deregulated.


Assuntos
Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptores de Trombina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/efeitos dos fármacos , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/genética
9.
Biochim Biophys Acta ; 1862(4): 545-555, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26826016

RESUMO

Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species.


Assuntos
Gorduras na Dieta/farmacologia , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Condicionamento Físico Animal , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Oligodendroglia/metabolismo , Receptor IGF Tipo 1/metabolismo
10.
PLoS One ; 9(11): e112986, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419565

RESUMO

RATIONALE: The family of natriuretic peptides (NPs), including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A) and GC-B (NPR-B). As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI) was investigated. OBJECTIVE: We utilized complementary in vitro and in vivo models to determine the potential role of PDI in regulating the ability of the NPs to generate its second messenger, cyclic guanosine monophosphate. METHODS AND RESULTS: Inhibition of PDI attenuated the ability of ANP, BNP and CNP to generate cGMP in human mesangial cells (HMCs), human umbilical vein endothelial cells (HUVECs), and human aortic smooth muscle cells (HASMCs), each of which were shown to express PDI. In LLC-PK1 cells, where PDI expression was undetectable by immunoblotting, PDI inhibition had a minimal effect on cGMP generation. Addition of PDI to cultured LLC-PK1 cells increased intracellular cGMP generation mediated by ANP. Inhibition of PDI in vivo attenuated NP-mediated generation of cGMP by ANP. Surface Plasmon Resonance demonstrated modest and differential binding of the natriuretic peptides with immobilized PDI in a cell free system. However, PDI was shown to co-localize on the surface of cells with GC-A and GC-B by co-immunoprecpitation and immunohistochemistry. CONCLUSION: These data demonstrate for the first time that cell surface PDI expression and function regulate the capacity of natriuretic peptides to generate cGMP through interaction with their receptors.


Assuntos
Membrana Celular/metabolismo , GMP Cíclico/metabolismo , Peptídeos Natriuréticos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Bacitracina/farmacologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Toxina Diftérica/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células LLC-PK1 , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Confocal , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/genética , Interferência de RNA , Receptores Acoplados a Guanilato Ciclase/metabolismo , Suínos
11.
Circ Res ; 115(3): 364-75, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24906644

RESUMO

RATIONALE: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. OBJECTIVE: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. METHODS AND RESULTS: Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. CONCLUSIONS: The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.


Assuntos
Túnica Adventícia/citologia , Aterosclerose/patologia , Linhagem Celular/imunologia , Macrófagos/citologia , Células-Tronco/citologia , Transferência Adotiva , Túnica Adventícia/imunologia , Animais , Antígenos Ly/metabolismo , Aorta/citologia , Aorta/imunologia , Apolipoproteínas E/genética , Aterosclerose/imunologia , Feminino , Hiperlipidemias/imunologia , Hiperlipidemias/patologia , Imunofenotipagem , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Baço/citologia , Células-Tronco/imunologia
12.
Arterioscler Thromb Vasc Biol ; 32(3): 704-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22223730

RESUMO

OBJECTIVE: Tissue factor pathway inhibitor (TFPI) is the primary regulator of the tissue factor (TF) coagulation pathway. As such, TFPI may regulate the proangiogenic effects of TF. TFPI may also affect angiogenesis independently of TF, through sequences within its polybasic carboxyl terminus (TFPI C terminus [TFPIct]). We aimed to determine the effects of TFPI on angiogenesis and the role of TFPIct. METHODS AND RESULTS: Transgenic overexpression of TFPI attenuated angiogenesis in the murine hindlimb ischemia model and an aortic sprout assay. In vitro, TFPI inhibited endothelial cell migration. Peptides within the human TFPIct inhibited endothelial cell cord formation and migration in response to vascular endothelial growth factor (VEGF) 165 but not VEGF121. Furthermore, exposure to human TFPIct inhibited the phosphorylation of VEGF receptor 2 at residue Lys951, a residue known to be critical for endothelial cell migration. Finally, systemic delivery of a murine TFPIct peptide inhibited angiogenesis in the hindlimb model. CONCLUSION: These data demonstrate an inhibitory role for TFPI in angiogenesis that is, in part, mediated through peptides within its carboxyl terminus. In addition to its known role as a TF antagonist, TFPI, via its carboxyl terminus, may regulate angiogenesis by directly blocking VEGF receptor 2 activation and attenuating the migratory capacity of endothelial cells.


Assuntos
Inibidores da Angiogênese/metabolismo , Isquemia/metabolismo , Lipoproteínas/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Inibidores da Angiogênese/química , Inibidores da Angiogênese/deficiência , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Movimento Celular , Modelos Animais de Doenças , Heparina/metabolismo , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Lipoproteínas/química , Lipoproteínas/deficiência , Lipoproteínas/genética , Lipoproteínas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/farmacologia , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Circulation ; 125(4): 592-603, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22203692

RESUMO

BACKGROUND: Hematopoiesis originates from the dorsal aorta during embryogenesis. Although adult blood vessels harbor progenitor populations for endothelial and smooth muscle cells, it is not known if they contain hematopoietic progenitor or stem cells. Here, we hypothesized that the arterial wall is a source of hematopoietic progenitor and stem cells in postnatal life. METHODS AND RESULTS: Single-cell aortic disaggregates were prepared from adult chow-fed C57BL/6 and apolipoprotein E-null (ApoE(-/-)) mice. In short- and long-term methylcellulose-based culture, aortic cells generated a broad spectrum of multipotent and lineage-specific hematopoietic colony-forming units, with a preponderance of macrophage colony-forming units. This clonogenicity was higher in lesion-free ApoE(-/-) mice and localized primarily to stem cell antigen-1-positive cells in the adventitia. Expression of stem cell antigen-1 in the aorta colocalized with canonical hematopoietic stem cell markers, as well as CD45 and mature leukocyte antigens. Adoptive transfer of labeled aortic cells from green fluorescent protein transgenic donors to irradiated C57BL/6 recipients confirmed the content of rare hematopoietic stem cells (1 per 4 000 000 cells) capable of self-renewal and durable, low-level reconstitution of leukocytes. Moreover, the predominance of long-term macrophage precursors was evident by late recovery of green fluorescent protein-positive colonies from recipient bone marrow and spleen that were exclusively macrophage colony-forming units. Although trafficking from bone marrow was shown to replenish some of the hematopoietic potential of the aorta after irradiation, the majority of macrophage precursors appeared to arise locally, suggesting long-term residence in the vessel wall. CONCLUSIONS: The postnatal murine aorta contains rare multipotent hematopoietic progenitor/stem cells and is selectively enriched with stem cell antigen-1-positive monocyte/macrophage precursors. These populations may represent novel, local vascular sources of inflammatory cells.


Assuntos
Aorta/citologia , Aorta/crescimento & desenvolvimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Monócitos/citologia , Transferência Adotiva , Animais , Antígenos Ly/metabolismo , Apolipoproteínas E/genética , Biomarcadores/metabolismo , Transplante de Medula Óssea , Linhagem da Célula/imunologia , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Imunofenotipagem , Macrófagos/citologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/imunologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/crescimento & desenvolvimento , Quimeras de Transplante , Irradiação Corporal Total
14.
Am J Respir Cell Mol Biol ; 43(1): 35-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19648471

RESUMO

Pulmonary hypertension (PH) is a commonly recognized complication of chronic respiratory disease. Enhanced vasoconstriction, pulmonary vascular remodeling, and in situ thrombosis contribute to the increased pulmonary vascular resistance observed in PH associated with hypoxic lung disease. The tissue factor pathway regulates fibrin deposition in response to acute and chronic vascular injury. We hypothesized that inhibition of the tissue factor pathway would result in attenuation of pathophysiologic parameters typically associated with hypoxia-induced PH. We tested this hypothesis using a chronic hypoxia-induced murine model of PH using mice that overexpress tissue factor pathway inhibitor (TFPI) via the smooth muscle-specific promoter SM22 (TFPI(SM22)). TFPI(SM22) mice have increased pulmonary TFPI expression compared with wild-type (WT) mice. In WT mice, exposure to chronic hypoxia (28 d at 10% O(2)) resulted in increased systolic right ventricular and mean pulmonary arterial pressures, changes that were significantly reduced in TFPI(SM22) mice. Chronic hypoxia also resulted in significant pulmonary vascular muscularization in WT mice, which was significantly reduced in TFPI(SM22) mice. Given the pleiotropic effects of TFPI, autocrine and paracrine mechanisms for these hemodynamic effects were considered. TFPI(SM22) mice had less pulmonary fibrin deposition than WT mice at 3 days after exposure to hypoxia, which is consistent with the antithrombotic effects of TFPI. Additionally, TFPI(SM22) mice had a significant reduction in the number of proliferating (proliferating cell nuclear antigen positive) pulmonary vascular smooth muscle cells compared with WT mice, which is consistent with in vitro findings. These findings demonstrate that overexpression of TFPI results in improved hemodynamic performance and reduced pulmonary vascular remodeling in a murine model of hypoxia-induced PH. This improvement is in part due to the autocrine and paracrine effects of TFPI overexpression.


Assuntos
Regulação da Expressão Gênica , Hipertensão Pulmonar/metabolismo , Hipóxia , Lipoproteínas/fisiologia , Animais , Proliferação de Células , Hemodinâmica , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Tromboplastina/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(27): 11282-7, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541613

RESUMO

Alternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading. The intron-retained transcript would generate a unique 34 amino acid (aa) carboxyl terminus while maintaining the remaining structure of native BNP. We generated antisera to this carboxyl terminus and identified immunoreactivity in failing human heart tissue. The alternatively spliced peptide (ASBNP) was synthesized and unlike BNP, failed to stimulate cGMP in vascular cells or vasorelax preconstricted arterial rings. This suggests that ASBNP may lack the dose-limiting effects of recombinant BNP. Given structural considerations, a carboxyl-terminal truncated form of ASBNP was generated (ASBNP.1) and was determined to retain the ability of BNP to stimulate cGMP in canine glomerular isolates and cultured human mesangial cells but lacked similar effects in vascular cells. In a canine-pacing model of heart failure, systemic infusion of ASBNP.1 did not alter mean arterial pressure but increased the glomerular filtration rate (GFR), suppressed plasma renin and angiotensin, while inducing natriuresis and diuresis. Consistent with its distinct in vivo effects, the activity of ASBNP.1 may not be explained through binding and activation of NPR-A or NPR-B. Thus, the biodesigner peptide ASBNP.1 enhances GFR associated with heart failure while lacking the vasoactive properties of BNP. These findings demonstrate that peptides with unique properties may be designed based on products of alternatively splicing.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Desenho de Fármacos , Rim/efeitos dos fármacos , Peptídeo Natriurético Encefálico/genética , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Bovinos , Cães , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Dados de Sequência Molecular , Peptídeo Natriurético Encefálico/química , Peptídeo Natriurético Encefálico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo
16.
Stroke ; 40(5): 1886-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19286583

RESUMO

BACKGROUND AND PURPOSE: Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function after vascular injury remains unknown. To define whether delivery of adipose-derived endothelial cells (ADECs) would improve healing of injured carotid arteries, a rabbit model of acute arterial injury was used. METHODS: Autologous rabbit ADECs were generated using defined culture conditions. To test the ability of ADECs to enhance carotid artery repair, cells were delivered intraarterially after acute balloon injury. Additional delivery studies were performed after functional selection of cells before delivery. RESULTS: After rabbit omental fat harvest and digestion, a proliferative, homogenous, and distinctly endothelial population of ADECs was identified. Direct delivery of autologous ADECs resulted in marked reendothelialization 48 hours after acute vascular injury as compared to saline controls (82.2+/-26.9% versus 4.2+/-3.0% P<0.001). Delivery of ADECs that were selected for their ability to take up acetylated LDL significantly improved vasoreactivity and decreased intimal formation after vascular injury. CONCLUSIONS: Taken together, these data suggest that ADECs represent an autologous source of proliferative endothelial cells, which demonstrate the capacity to rapidly improve reendothelialization, improve vascular reactivity, and decrease intimal formation in a carotid artery injury model.


Assuntos
Tecido Adiposo/transplante , Doenças das Artérias Carótidas/terapia , Células Endoteliais/transplante , Acetilação , Tecido Adiposo/citologia , Animais , Artérias Carótidas/patologia , Cateterismo , Células Cultivadas , LDL-Colesterol/metabolismo , Endotélio Vascular/crescimento & desenvolvimento , Citometria de Fluxo , Imuno-Histoquímica , Microscopia Confocal , Coelhos
17.
Endothelium ; 14(1): 1-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17364891

RESUMO

Cells with an endothelial phenotype can be cultured from peripheral blood. These cells include cells of a monocytic origin with endothelial features (culture-modified mononuclear cells, CMMCs) and, at later time points, blood outgrowth endothelial cells (BOECs). Both are promising candidates for systemic cell-based cardiovascular therapies and each may have unique capabilities. Indeed, the combined use of both cell types has been shown to have synergistic therapeutic features requiring simultaneous delivery. However, the majority of preclinical studies of cell delivery have used splenectomized animals to increase systemic distribution. The goal of this study was to directly compare the distribution of these two cell types following systemic delivery in an intact animal model. A similar pattern of delivery was seen following delivery of both cell types with detection in the lung, liver, bone marrow, and spleen. Taken together, the data suggest that strategies using systemic delivery of circulation-derived cells must consider the distribution and efficiency of delivery in intact animals.


Assuntos
Células Endoteliais/fisiologia , Células Endoteliais/transplante , Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/citologia , Leucócitos Mononucleares/citologia , Animais , Diferenciação Celular , Células Cultivadas , Células Endoteliais/citologia , Masculino , Camundongos , Camundongos SCID , Suínos , Distribuição Tecidual , Transplante Heterólogo
18.
Thromb Haemost ; 92(3): 495-502, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15351845

RESUMO

Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that regulates the extrinsic pathway of coagulation by inhibiting the factor VIIa/tissue factor (TF) catalytic complex. TFPI is expressed by both endothelial and smooth muscle cells in the vasculature and circulates at low levels. The role of local vascular TFPI in thrombosis and the development of vascular disease is unknown. To establish an experimental animal model to directly modulate smooth muscle cell-derived TFPI on the development of arterial thrombosis, transgenic mice in which a cDNA encoding murine TFPI is expressed from the murine SM22alpha promoter were generated. Expression of transgenic mRNA was 4-fold higher than the level of endogenous TFPI mRNA in arteries from transgenic mice. In situ hybridization confirmed that expression of the transgene was limited to medial vascular smooth muscle cells. Vascular TFPI activity was increased to 2 to 3-fold in carotid homogenates. There was no difference in plasma TFPI levels or hemostatic measures (PT, aPTT and tail vein bleeding times) between these mice and their wildtype littermates. In a ferric chloride-induced model of carotid thrombosis, homozygotic transgenic mice demonstrated resistance to thrombotic occlusion compared to wildtype littermates. In transgenic mice 22% occluded within 30 minutes of application while 84% of wild type mice occluded within the same time frame (p<0.01). Heterozygotic transgenic mice had an intermediate thrombotic phenotype. Taken together, these data indicated that local VSMC-specific TFPI overexpression attenuated ferric chloride-induced thrombosis without systemic or hemostatic effects. Furthermore, this transgenic mouse model should prove useful for studying the role of TFPI in the development and progression of vascular disease.


Assuntos
Arteriopatias Oclusivas/etiologia , Modelos Animais de Doenças , Lipoproteínas/fisiologia , Músculo Liso Vascular/citologia , Trombose/etiologia , Animais , Arteriopatias Oclusivas/prevenção & controle , Doenças das Artérias Carótidas/etiologia , Terapia Genética , Genótipo , Lipoproteínas/deficiência , Lipoproteínas/genética , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , RNA Mensageiro/análise , Trombose/prevenção & controle , Transgenes
19.
Am J Physiol Heart Circ Physiol ; 287(2): H494-500, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277193

RESUMO

Cell-based delivery of therapeutic viruses has potential advantages over systemic viral administration, including attenuated neutralization and improved viral targeting. One of the exciting new areas of investigation is the potential ability of endothelial-lineage cells to deliver genes to the areas of neovascularization. In the present study, we compared two types of endothelial-lineage cells [outgrowth endothelial cells (OECs) and culture-modified mononuclear cells (CMMCs), also known as "endothelial progenitor cells"] for their ability to be infected with adenovirus and to home to the areas of neovascularization. Both cell types were isolated from peripheral blood of healthy human donors and expanded in culture. We demonstrate that OECs are more infectable and home better to tumors expressing VEGF on systemic administration. Furthermore, we used an adenoviral/retroviral chimeric system to convert OECs to retrovirus-producing cells. When injected systemically into tumor-bearing mice, OECs retain their ability to produce retrovirus and infect surrounding tumor cells. Our data demonstrate that OECs could be efficient carriers for viral delivery to areas of tumor neovascularization.


Assuntos
Adenoviridae/genética , Endotélio Vascular/citologia , Endotélio Vascular/virologia , Técnicas de Transferência de Genes , Vetores Genéticos , Neoplasias/genética , Retroviridae/genética , Infecções por Adenoviridae/genética , Animais , Diferenciação Celular , Quimera , Feminino , Humanos , Camundongos , Camundongos Nus , Monócitos/citologia , Monócitos/virologia , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Neoplasias/virologia , Neovascularização Patológica , Infecções por Retroviridae/genética
20.
Am J Physiol Heart Circ Physiol ; 287(2): H512-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15072951

RESUMO

Delivery of a heterogeneous population of cells with endothelial phenotype derived from peripheral blood has been shown to improve vascular responses after balloon arterial injury in an endothelium-dependent manner. Refinement of culture techniques has enabled the generation of outgrowth endothelial cells (OECs), a homogeneous population of distinctly endothelial cells expanded from circulating progenitor cells. The present study tested the hypothesis that OEC delivery would confer vascular protection after balloon arterial injury in a rabbit model. Rabbit peripheral blood mononuclear cells (PBMCs) were cultured in endothelial growth medium for 4-5 wk, yielding proliferative OECs with distinct endothelial phenotype (morphology, incorporation of acetylated LDL, and expression of endothelial nitric oxide synthase and caveolin-1 but not CD14). Animals underwent balloon carotid injury immediately followed by local delivery of autologous OECs for 20 min. Fluorescent-labeled OECs were detected in all layers at 4 wk, with immunostaining revealing maintenance of endothelial phenotype (von Willebrand factor-positive and RAM-11-negative) by luminal and nonluminal cells. To evaluate functional effects, additional animals received autologous OECs, saline, or freshly harvested PBMCs as noncultured cell controls by local dwell after balloon injury. Local OEC delivery improved endothelium-dependent vasoreactivity (P < 0.05 vs. saline and PBMC) and similarly reduced neointimal formation (P < 0.05 vs. saline and PBMC). These data suggest that OECs can be detected in injured arterial segments at 4 wk. Moreover, delivery of OECs confers greater vascular protection than PBMCs or saline controls and may thus offer a novel, autologous strategy to limit the response to mechanical injury.


Assuntos
Células Sanguíneas/citologia , Lesões das Artérias Carótidas/fisiopatologia , Lesões das Artérias Carótidas/cirurgia , Transplante de Células , Endotélio Vascular/citologia , Células-Tronco/citologia , Animais , Lesões das Artérias Carótidas/etiologia , Cateterismo/efeitos adversos , Diferenciação Celular , Células Cultivadas , Endotélio Vascular/fisiopatologia , Coelhos , Transplante Autólogo , Túnica Íntima/crescimento & desenvolvimento , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...