Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 40(4): 824-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22251683

RESUMO

Temperature has strong effects on metabolic processes of individuals and demographics of populations, but effects on ecological communities are not well known. Many economically and ecologically important pest species have obligate associations with other organisms; therefore, effects of temperature on these species might be mediated by strong interactions. The southern pine beetle (Dendroctonus frontalis Zimmermann) harbors a rich community of phoretic mites and fungi that are linked by many strong direct and indirect interactions, providing multiple pathways for temperature to affect the system. We tested the effects of temperature on this community by manipulating communities within naturally infested sections of pine trees. Direct effects of temperature on component species were conspicuous and sometimes predictable based on single-species physiology, but there were also strong indirect effects of temperature via alteration of species interactions that could not have been predicted based on autecological temperature responses. Climatic variation, including directional warming, will likely influence ecological systems through direct physiological effects as well as indirect effects through species interactions.


Assuntos
Consórcios Microbianos , Ácaros/fisiologia , Simbiose , Temperatura , Gorgulhos/parasitologia , Animais , Feminino , Masculino , Pinus/parasitologia , Densidade Demográfica , Crescimento Demográfico , Reprodução , Gorgulhos/microbiologia
2.
Environ Entomol ; 38(1): 67-77, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19791599

RESUMO

Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological, evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host (macrosymbiont), such as direct or indirect nutrition, ability to counter the defenses of plant or animal hosts, protection from natural enemies, improved development and reproduction, and communication. Benefits to the microsymbiont (including a broad range of fungi, bacteria, mites, nematodes, etc.) often include transport, protection from antagonists, and protection from environmental extremes. Symbiotic relationships may be mutualistic, commensal, competitive, or parasitic. In many cases, individual relationships may include both beneficial and detrimental effects to each partner during various phases of their life histories or as environmental conditions change. The outcomes of insect-microbial interactions are often strongly mediated by other symbionts and by features of the external and internal environment. These outcomes can also have important effects on human well being and environmental quality, by affecting agriculture, human health, natural resources, and the impacts of invasive species. We argue that, for many systems, our understanding of symbiotic relationships will advance most rapidly where context dependency and multipartite membership are integrated into existing conceptual frameworks. Furthermore, the contribution of entomological studies to overall symbiosis theory will be greatest where preoccupation with strict definitions and artificial boundaries is minimized, and integration of emerging molecular and quantitative techniques is maximized. We highlight symbiotic relations involving bark beetles to illustrate examples of the above trends.


Assuntos
Evolução Biológica , Ecossistema , Insetos/genética , Insetos/fisiologia , Simbiose/fisiologia , Adaptação Fisiológica , Agricultura , Animais , Conservação dos Recursos Naturais , Interações Hospedeiro-Parasita , Humanos , Controle Biológico de Vetores
3.
Insect Mol Biol ; 17(3): 261-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18477241

RESUMO

The southern pine beetle (Dendroctonus frontalis Zimmermann) kills all pines within its range and is among the most important forest pest species in the US. Using a specialized mycangium surrounded by gland cells in the pronotum, adult females culture, transport, and inoculate two fungi into beetle galleries during oviposition. These fungal symbionts, to varying degrees, exclude antagonistic fungi and provide nutrients to larvae. However, the mechanisms (e.g. secreted antibiotic chemicals or nutrients, proteins or pathways) by which this relationship is maintained are not known. Here we present the first global and differential proteome profile of the southern pine beetle pronotum. Two-dimensional polyacrylamide electrophoresis, tandem mass spectrometry, and database searches revealed that the majority of pronotal proteins were related to energy-yielding metabolism, contractile apparati, cell structure, and defence. The identified proteins provide important insights into the molecular and biochemical processes of, and candidates for functional genomics to understand mycangia and pronotum functions in, the southern pine beetle.


Assuntos
Estruturas Animais/química , Besouros/anatomia & histologia , Besouros/química , Proteínas de Insetos/análise , Pinus/parasitologia , Estruturas Animais/anatomia & histologia , Estruturas Animais/ultraestrutura , Animais , Besouros/ultraestrutura , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/classificação , Masculino , Transporte Proteico , Proteoma/análise , Caracteres Sexuais , Frações Subcelulares/química
4.
J Chem Ecol ; 31(3): 539-60, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15898500

RESUMO

We examined the interaction between host trees and fungi associated with a tree-killing bark beetle, Dendroctonus frontalis. We evaluated (1) the response of four Pinus species to fungal invasion and (2) the effects of plant secondary metabolites on primary growth of and secondary colonization of three consistent fungal associates. Two of these fungi, Entomocorticium sp. A and Ophiostoma ranaculosum, are obligate mutualists with D. frontalis, and the third associate is a blue-staining fungus, O. minus, that is commonly introduced by beetles and phoretic mites. O. minus negatively affects beetle larvae and in high abundance can impact D. frontalis population dynamics. Size of lesions formed and quantity of secondary metabolites produced in response to fungal inoculations varied significantly among Pinus species. However, monoterpene composition within infected tissue did not significantly vary across treatments. While all eight tested metabolites negatively affected the growth rate of O. minus, only 4-allylanisole, p-cymene, and terpinene reduced the growth of the mycangial fungi. Surprisingly, growth rates of mycangial fungi increased in the presence of several secondary metabolite volatiles. O. minus out-competed both mycangial fungi, but the presence of secondary metabolites altered the outcome slightly. O. ranaculosum out-performed E. sp. A in the presence of dominant conifer monoterpenes, such as alpha- and beta-pinene. Volatiles from the mycangial fungi, particularly E. sp. A, had a negative effect on O. minus growth. In general, phloem phytochemistry of particular Pinus species appeared to alter the relative growth and competitiveness of mutualistic and non-mutualistic fungi associated with D. frontalis. The outcome of interactions among these fungi likely has important consequences for the population dynamics of D. frontalis.


Assuntos
Fungos/fisiologia , Óleos Voláteis/metabolismo , Pinus/metabolismo , Pinus/microbiologia , Doenças das Plantas/microbiologia , Animais , Besouros/microbiologia , Besouros/fisiologia , Interações Hospedeiro-Parasita , Solo , Fatores de Tempo , Ácido Úrico
5.
Plant Dis ; 88(11): 1174-1178, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30795310

RESUMO

Freshly lifted seedlings and 21-year-old trees of loblolly pine were wound-inoculated with Leptographium species recovered from the soil and/or roots of trees with loblolly decline symptoms in central Alabama. Seedlings inoculated with L. procerum in the greenhouse produced significantly fewer root initials and a smaller root mass than control seedlings. Vertical lesions produced in seedlings by L. serpens and L. terebrantis were significantly longer than in controls. Lesions produced in mature trees by L. serpens and L. lundbergii were significantly longer than in controls. Of the fungi tested, L. serpens, L. terebrantis, and L. lundbergii were the most aggressive and may pose the greatest threat to loblolly pines.

6.
J Econ Entomol ; 94(5): 1113-21, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11681673

RESUMO

Root and lower stem insects cause significant damage to conifers, vector phytopathogenic fungi, and can predispose trees to bark beetle attacks. The development of effective sampling techniques is an important component in managing these cryptic insects. We tested the effects of trap type and stereochemistry of alpha-pinene, in combination with ethanol, on catches of the root colonizing weevils (Coleoptera: Curculionidae) Hylobius spp. [mostly Hylobius pales (Herbst)], and Pachylobius picivorus (Germar), the root colonizing bark beetle (Coleoptera: Scolytidae) Hylastes porculus Erickson, and the lower stem colonizing bark beetle Dendroctonus valens (LeConte). We tested for inter-regional differences by conducting similar field assays in the northern (Wisconsin) and southern (Louisiana) United States. The more effective trap type varied with region. Root weevils were caught primarily in pitfall traps in Wisconsin, whereas they were caught mostly in lower stem flight traps in Louisiana. In Wisconsin, root colonizing bark beetles were also caught primarily in pitfall traps, but lower stem colonizing bark beetles were caught primarily in lower stem flight traps. The root feeding weevils preferred (-) over (+)-alpha-pinene in both regions. Some exceptions relating to trap type or gender occurred in southern populations. The two root and lower stem colonizing bark beetles in Wisconsin showed no preference between (+) and (-)-alpha-pinene in combination with ethanol. No bark beetles were caught in the south. Our results suggest that modifying trap type and enantiomeric ratios of monoterpenes for different insect groups and in different regions can improve sampling efficiency for these important pests.


Assuntos
Besouros , Controle de Insetos/métodos , Monoterpenos , Feromônios , Pinus , Terpenos , Animais , Monoterpenos Bicíclicos , Feminino , Louisiana , Masculino , Pinus/química , Raízes de Plantas , Caules de Planta , Estereoisomerismo , Terpenos/análise , Wisconsin
7.
Appl Environ Microbiol ; 63(2): 621-7, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16535518

RESUMO

The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi. Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle. A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (phoretically) and is an antagonist of the beetle. This study examined competitive interactions among these three fungi. The results of de Wit replacement series and primary and secondary resource capture assays with these fungi provide strong evidence for differential competition between the phoretic and mycangial fungi. O. minus was the most able to capture both uncolonized and colonized resources. Entomocorticium sp. A and C. ranaculosus, although equal to one another in competitive abilities, differed in their ability to compete with O. minus. Entomocorticium sp. A was able to maintain space free of O. minus to a much greater degree than was C. ranaculosus. The outcome of such competitive interactions may have significant impacts on the biology of this ecologically and economically important beetle.

8.
J Chem Ecol ; 22(8): 1367-88, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24226243

RESUMO

This study considered how host plant allelochemicals may contribute to defense against insects and fungi that jointly colonize the subcortical tissues of trees, the relative roles of constitutive and inducible chemistry in these defenses, and how the actions of two different feeding guilds might be interrelated. Our model consisted of the coniferous treePinus resinosa, the root- and lower stem-colonizing beetlesHylastes porculus andDendroctonus valens, and their associated fungiLeptographium procerum andL. terebrantis, and the stem-colonizing bark beetleIps pini and its associated fungusOphiostoma ips. In a novel bioassay, extracts from reaction tissue elicted by wound inoculation withL. terebrantis were more repellent to beetles than were similar extracts from constitutive or mechanically wounded tissue. The effect on beetle behavior was more pronounced in nonpolar extracts, which contain mostly monoterpenes, than in polar extracts, which contain mostly phenolics. Synthetic monoterpenes at concentrations present in the various tissues exerted similar effects and were likewise repellent in dose-response experiments. Growth ofL. procerum andL. terebrantis was inhibited by polar extracts from constitutive and reaction tissue. Inhibition was higher in wounded than control tissue, but the inhibition response did not vary with the type of wounding. Synthetic monoterpenes strongly inhibited spore germination and mycelial growth of both fungi. Colonization of red pine roots byLeptographium spp. altered the subsequent effects of extracts of stem phloem tissue onI. pini. These effects varied with host condition. Beetles preferred extracts from constitutive stem phloem tissue of healthy trees to that of root-diseased trees. However, extracts from reaction tissues of healthy trees were more repellent toI. pini than were the reaction tissues of root-diseased trees. The implications of these results to plant defense against insect-fungal complexes and interactions among different feeding guilds are discussed.

9.
J Chem Ecol ; 21(5): 601-26, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-24234253

RESUMO

This study characterized the chemical response of healthy red pine to artificial inoculation with the bark beetle-vectored fungusLeptographium terebrantis. In addition, we sought to determine whether stress altered this induced response and to understand the implications of these interactions to the study of decline diseases. Twenty-five-year-old trees responded to mechanical wounding or inoculation withL. terebrantis by producing resinous reaction lesions in the phloem. Aseptically wounded and wound-inoculated phloem contained higher concentrations of phenolics than did constitutive tissue. Trees inoculated withL. terebrantis also contained higher concentrations of six monoterpenes,α-pinene,ß-pinene, 3-carene, limonene, camphene, and myrcene, and higher total monoterpenes than did trees that were mechanically wounded or left unwounded. Concentrations of these monoterpenes increased with time after inoculation. Total phenolic concentrations in unwounded stem tissue did not differ between healthy and root-diseased trees. Likewise, constitutive monoterpene concentrations in stem phloem were similar between healthy and root-diseased trees. However, when stem phloem tissue was challenged with fungal inoculations, reaction tissue from root-diseased trees contained lower concentrations ofα-pinene, the predominant monoterpene in red pine, than did reaction tissue from healthy trees. Seedlings stressed by exposure to low light levels exhibited less extensive induced chemical changes when challenge inoculated withL. terebrantis than did seedlings growing under higher light. Stem phloem tissue in these seedlings contained lower concentrations ofα-pinene than did nonstressed seedlings also challenge inoculated withL. terebrantis. It is hypothesized that monoterpenes and phenolics play a role in the defensive response of red pine against insect-fungal attack, that stress may predispose red pine to attack by insect-fungal complexes, and that such interactions are involved in red pine decline disease. Implications to plant defense theory and interactions among multiple stress agents in forest decline are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA