Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874173

RESUMO

Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.


Assuntos
Técnicas de Cultura de Células , Intestinos , Humanos , Camundongos , Animais
2.
ACS Biomater Sci Eng ; 7(9): 4209-4220, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34510904

RESUMO

Synthetic nerve guidance conduits (NGCs) offer an alternative to harvested nerve grafts for treating peripheral nerve injury (PNI). NGCs have been made from both naturally derived and synthesized materials. While naturally derived materials typically have an increased capacity for bioactivity, synthesized materials have better material control, including tunability and reproducibility. Protein engineering is an alternative strategy that can bridge the benefits of these two classes of materials by designing cell-responsive materials that are also systematically tunable and consistent. Here, we tested a recombinantly derived elastin-like protein (ELP) hydrogel as an intraluminal filler in a rat sciatic nerve injury model. We demonstrated that ELPs enhance the probability of forming a tissue bridge between the proximal and distal nerve stumps compared to an empty silicone conduit across the length of a 10 mm nerve gap. These tissue bridges have evidence of myelinated axons, and electrophysiology demonstrated that regenerated axons innervated distal muscle groups. Animals implanted with an ELP-filled conduit had statistically higher functional control at 6 weeks than those that had received an empty silicone conduit, as evaluated by the sciatic functional index. Taken together, our data support the conclusion that ELPs support peripheral nerve regeneration in acute complete transection injuries when used as an intraluminal filler. These results support the further study of protein engineered recombinant ELP hydrogels as a reproducible, off-the-shelf alternative for regeneration of peripheral nerves.


Assuntos
Elastina , Regeneração Tecidual Guiada , Animais , Regeneração Nervosa , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Nervo Isquiático/cirurgia , Alicerces Teciduais
3.
Adv Sci (Weinh) ; 8(10): 2004705, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026461

RESUMO

Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin-like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue-derived, epithelial-only intestinal organoids. HELP enables the encapsulation of dissociated patient-derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal-derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin-ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid-matrix interactions and potential patient-specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G' ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10-3-1 × 10-3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal-derived products or synthetic polyethylene glycol for potential clinical translation.


Assuntos
Células Epiteliais/citologia , Mucosa Intestinal/citologia , Organoides/citologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Elastina/química , Células Epiteliais/metabolismo , Matriz Extracelular/química , Humanos , Ácido Hialurônico/química , Mucosa Intestinal/metabolismo , Camundongos , Organoides/metabolismo
4.
Muscle Nerve ; 59(5): 603-610, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681163

RESUMO

INTRODUCTION: Injuries to peripheral nerves cause distal muscle atrophy. The effects of adipose-derived stem cell (ASC) injections into a muscle after injury were examined. METHODS: A 1.5 cm defect in the rat sciatic nerve was created, resulting in gastrocnemius muscle atrophy. The nerve defect was repaired with autograft; DiR-labeled ASCs were injected into the gastrocnemius immediately postoperatively. Quantitation of gross musculature and muscle fiber area, cell survival, fibrosis, lipid deposition, inflammation, and reconstructive responses were investigated. RESULTS: ASCs were identified in the muscle at 6 weeks, where injections showed increased muscle mass percentage retained, larger average fiber area, and less overall lipid content accumulated throughout the musculature. Muscles having received ASCs showed increased presence of interlukin-10 and Ki67, and decreased inducible nitric oxide synthase (iNOS). DISCUSSION: This investigation is suggestive that an ASC injection into denervated muscle post-operatively is able to delay the onset of atrophy. Muscle Nerve 59:603-603, 2019.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Traumatismos dos Nervos Periféricos/patologia , Nervo Isquiático/lesões , Transplante de Células-Tronco , Células-Tronco , Animais , Distrofina/metabolismo , Imuno-Histoquímica , Interleucina-10/metabolismo , Antígeno Ki-67/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...