Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Recognit ; 9(5-6): 595-606, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-9174945

RESUMO

Time-resolved chiroptical luminescence (TR-CL) measurements are used to study the kinetics of chirality-dependent excited-state quenching processes in aqueous solution. Experiments are carried out on samples that contain a racemic mixture of chiral luminophore molecules (L) in solution with a small, optically active concentration of chiral quencher molecules (Q). The luminophores are excited with a pulse of unpolarized light to create an initially racemic excited-state population of lambda L* and delta L* enantiomers, and TR-CL measurements are then used to monitor the differential decay kinetics of the lambda L* and delta L* subpopulations. Observed differences between the lambda L* and delta L* decay kinetics reflect differential rate processes and efficiencies for lambda L*-Q versus delta L*-Q quenching actions, and they are diagnostic of chiral discriminatory interactions between the luminophore and quencher molecules. In this study, the luminophores are either Eu(dpa)3(3-) or Tb(dpa)3(3-) coordination complexes (where dpa denotes a dipicolinate dianion ligand), and the quenchers are diastereomeric structures of Cr(H2O)4(ATP), Rh(H2O)4(ATP) and Rh(H2O)3(ATP) (where ATP identical to adenosine triphosphate). The Ln(dpa)3(3-) (Ln identical to En3+ or Tb3+) complexes have three-bladed propeller-like structures of D3 symmetry, and in aqueous solution they exist as a racemic mixture of left-handed (lambda) and right-handed (delta) configurational isomers (enantiomers). The results show that the chiral quencher molecules can distinguish between the lambda and delta enantiomeric structures of the luminophores in their excited-state quenching actions. The degree and sense of enantiomeric preference in these quenching actions are governed by the electronic and stereochemical properties of the quencher molecules. Twenty-one different luminophore-quencher systems are examined in this study, and they exhibit interestingly diverse enantiodifferential quenching kinetics. The results reflect the extraordinary sensitivity of chiral recognition and discrimination processes to relatively small, and sometimes subtle, changes in molecular electronic and stereochemical structure.


Assuntos
Ácidos Picolínicos/química , Espectrometria de Fluorescência , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Cinética , Medições Luminescentes , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química , Ródio
3.
Biochemistry ; 21(26): 6979-84, 1982 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-6297542

RESUMO

It has previously been shown that there are two sites for divalent metals at the active site of kidney (Na+ + K+)-ATPase, one bound directly to the enzyme and one coordinated to the ATP substrate [Grisham, C. (1981) J. Inorg. Biochem. 14, 45; O'Connor, S., & Grisham, C. (1980) FEBS Lett. 118, 303]. The conformation of the metal-nucleotide complex has been studied by using beta, gamma-bidentate Co-(NH3)4ATP, a substitution-inert analogue of MgATP. Kinetic studies show that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the (Na+ + K+)-ATPase. The Ki values under both high- and low-affinity conditions (Ki = 10 microM and Ki = 1.6 mM, respectively) are similar to the Km values for MnATP under the same conditions (2.88 microM and 0.902 mM). From the paramagnetic effect of Mn2+ bound to the ATPase on the longitudinal relaxation rates of the phosphorus nuclei of Co(NH3)4ATP at the substrate site (at 40.5 and 145.75 MHz), Mn-P distances to all three phosphates are determined. The distances are consistent with the formation of a second sphere coordination complex on the enzyme between Mn2+ and the phosphates of Co(NH3)4ATP. In this respect, kidney (Na+ + K+)-ATPase appears to be similar to pyruvate kinase [Sloan, D., & Mildvan, A. (1976) J. Biol. Chem. 251, 2412] and phosphoribosylpyrophosphate synthetase [Granot, J., Gibson, K., Switzer, R., & Mildvan, A. (1980) J. Biol. Chem. 255, 10931]. Roles for both of the active site divalent cations are discussed.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Medula Renal/enzimologia , Compostos Organometálicos , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Cinética , Espectroscopia de Ressonância Magnética , Matemática , Modelos Moleculares , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA