Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
J Cell Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775127

RESUMO

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37545759

RESUMO

Background-: Transplantation of autologous mitochondria into ischemic tissue may mitigate injury caused by ischemia and reperfusion. Methods-: Using murine stroke models of middle cerebral artery occlusion, we sought to evaluate feasibility of delivery of viable mitochondria to ischemic brain parenchyma. We evaluated the effects of concurrent focused ultrasound activation of microbubbles, which serves to open the blood-brain barrier, on efficacy of delivery of mitochondria. Results-: Following intra-arterial delivery, mitochondria distribute through the stroked hemisphere and integrate into neural and glial cells in the brain parenchyma. Consistent with functional integration in the ischemic tissue, the transplanted mitochondria elevate concentration of adenosine triphosphate in the stroked hemisphere, reduce infarct volume and increase cell viability. Additional of focused ultrasound leads to improved blood brain barrier opening without hemorrhagic complications. Conclusions-: Our results have implications for the development of interventional strategies after ischemic stroke and suggest a novel potential modality of therapy after mechanical thrombectomy.

3.
Theranostics ; 13(12): 4079-4101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554276

RESUMO

Ultrasound-triggered microbubbles destruction leading to vascular shutdown have resulted in preclinical studies in tumor growth delay or inhibition, lesion formation, radio-sensitization and modulation of the immune micro-environment. Antivascular ultrasound aims to be developed as a focal, targeted, non-invasive, mechanical and non-thermal treatment, alone or in combination with other treatments, and this review positions these treatments among the wider therapeutic ultrasound domain. Antivascular effects have been reported for a wide range of ultrasound exposure conditions, and evidence points to a prominent role of cavitation as the main mechanism. At relatively low peak negative acoustic pressure, predominantly non-inertial cavitation is most likely induced, while higher peak negative pressures lead to inertial cavitation and bubbles collapse. Resulting bioeffects start with inflammation and/or loose opening of the endothelial lining of the vessel. The latter causes vascular access of tissue factor, leading to platelet aggregation, and consequent clotting. Alternatively, endothelium damage exposes subendothelial collagen layer, leading to rapid adhesion and aggregation of platelets and clotting. In a pilot clinical trial, a prevalence of tumor response was observed in patients receiving ultrasound-triggered microbubble destruction along with transarterial radioembolization. Two ongoing clinical trials are assessing the effectiveness of ultrasound-stimulated microbubble treatment to enhance radiation effects in cancer patients. Clinical translation of antivascular ultrasound/microbubble approach may thus be forthcoming.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Microbolhas , Medicina de Precisão , Ultrassonografia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Microambiente Tumoral
4.
Invest Radiol ; 58(12): 865-873, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433074

RESUMO

OBJECTIVES: The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS: The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the ß-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS: The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS: The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.


Assuntos
Aneurisma da Aorta Abdominal , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Acústica , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microbolhas , Fator A de Crescimento do Endotélio Vascular
5.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409274

RESUMO

Malignant mesothelioma (MM) is a lethal tumor originating in the mesothelium with high chemotherapeutic resistance. Cancer stem cells (CSCs) persist in tumors and are critical targets responsible for tumor resistance and recurrence. The identification and characterization of CSCs may help develop effective treatment for MM. The objective of this study was to evaluate the therapeutic effect of molecular targeted radiotherapy by 177Lu-labeled immunoliposomes (177Lu-ILs) on CSCs of mesothelioma. MM CSCs were sorted based on CD26/CD24 expression level and their functional significances were established by small interference RNA. CSC potential of MM was evaluated for drug resistance, cell invasion, and cell growth rate in vitro. CSC metabolism was evaluated with the uptake of 18F-FDG. Therapeutic effects of 177Lu-labeled immunoliposomes targeting CD26 and CD24 were evaluated in vitro through proliferation and apoptotic assays. CSCs sorted from H28 cells exhibited significant drug resistance and enhanced proliferative activity as well as increased metabolism indicated by higher 18F-FDG uptake. Treatment with 177Lu-ILs, compared with 177Lu-CL and ILs, showed enhanced therapeutic effects on inhibition of proliferation, up-regulation of apoptosis, and suppression of CD26 and CD24 expression. Thus, our results suggest that molecular radiotherapy targeting both CD26 and CD24 could be a promising approach for CSC-targeting therapy for MM.


Assuntos
Mesotelioma Maligno , Mesotelioma , Linhagem Celular Tumoral , Dipeptidil Peptidase 4/metabolismo , Fluordesoxiglucose F18/metabolismo , Humanos , Lipossomos/metabolismo , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/radioterapia , Células-Tronco Neoplásicas/metabolismo
6.
Ultrasound Med Biol ; 48(6): 1058-1069, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35287996

RESUMO

Mouse models are critical in developing new therapeutic approaches to treat peripheral arterial disease (PAD). Despite decades of research and numerous clinical trials, the efficacy of available therapies is limited. This may suggest shortcomings in our current animal models and/or methods of assessment. We evaluated perfusion measurement methods in a mouse model of PAD by comparing laser Doppler perfusion imaging (LDPI, the most common technique), contrast-enhanced ultrasound (CEUS, an emerging technique) and fluorescent microspheres (conventional standard). Mice undergoing a femoral artery ligation were assessed by LDPI and CEUS at baseline and 1, 4, 7, 14, 28, 60, 90 and 150 d post-surgery to evaluate perfusion recovery in the ischemic hindlimb. Fourteen days after surgery, additional mice were measured with fluorescent microspheres, LDPI, and CEUS. LDPI and CEUS resulted in broadly similar trends of perfusion recovery until 7 d post-surgery. However, by day 14, LDPI indicated full recovery of perfusion, whereas CEUS indicated ∼50% recovery, which failed to improve even after 5 mo. In agreement with the CEUS results, fluorescent microspheres at day 14 post-surgery confirmed that perfusion recovery was incomplete. Histopathology and photoacoustic microscopy provided further evidence of sustained vascular abnormalities.


Assuntos
Arteriopatias Oclusivas , Doença Arterial Periférica , Animais , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Isquemia/diagnóstico por imagem , Isquemia/patologia , Lasers , Camundongos , Perfusão , Imagem de Perfusão/métodos , Doença Arterial Periférica/diagnóstico por imagem
7.
BME Front ; 2022: 9826279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850182

RESUMO

Objective. This paper is an initial work towards developing particle-mediated histotripsy (PMH) as a novel method of treating catheter-based medical device (CBMD) intraluminal biofilms. Impact Statement. CBMDs commonly become infected with bacterial biofilms leading to medical device failure, infection, and adverse patient outcomes. Introduction. Histotripsy is a noninvasive focused ultrasound ablation method that was recently proposed as a novel method to remove intraluminal biofilms. Here, we explore the potential of combining histotripsy with acoustically active particles to develop a PMH approach that can noninvasively remove biofilms without the need for high acoustic pressures or real-time image guidance for targeting. Methods. Histotripsy cavitation thresholds in catheters containing either gas-filled microbubbles (MBs) or fluid-filled nanocones (NCs) were determined. The ability of these particles to sustain cavitation over multiple ultrasound pulses was tested after a series of histotripsy exposures. Next, the ability of PMH to generate selective intraluminal cavitation without generating extraluminal cavitation was tested. Finally, the biofilm ablation and bactericidal capabilities of PMH were tested using both MBs and NCs. Results. PMH significantly reduced the histotripsy cavitation threshold, allowing for selective luminal cavitation for both MBs and NCs. Results further showed PMH successfully removed intraluminal biofilms in Tygon catheters. Finally, results from bactericidal experiments showed minimal reduction in bacteria viability. Conclusion. The results of this study demonstrate the potential for PMH to provide a new modality for removing bacterial biofilms from CBMDs and suggest that additional work is warranted to develop histotripsy and PMH for treatment of CBMD intraluminal biofilms.

8.
J Neurosurg ; : 1-11, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798617

RESUMO

OBJECTIVE: Surgery can be highly effective for the treatment of medically intractable, neurological disorders, such as drug-resistant focal epilepsy. However, despite its benefits, surgery remains substantially underutilized due to both surgical concerns and nonsurgical impediments. In this work, the authors characterized a noninvasive, nonablative strategy to focally destroy neurons in the brain parenchyma with the goal of limiting collateral damage to nontarget structures, such as axons of passage. METHODS: Low-intensity MR-guided focused ultrasound (MRgFUS), together with intravenous microbubbles, was used to open the blood-brain barrier (BBB) in a transient and focal manner in rats. The period of BBB opening was exploited to focally deliver to the brain parenchyma a systemically administered neurotoxin (quinolinic acid) that is well tolerated peripherally and otherwise impermeable to the BBB. RESULTS: Focal neuronal loss was observed in targeted areas of BBB opening, including brain regions that are prime objectives for epilepsy surgery. Notably, other structures in the area of neuronal loss, including axons of passage, glial cells, vasculature, and the ventricular wall, were spared with this procedure. CONCLUSIONS: These findings identify a noninvasive, nonablative approach capable of disconnecting neural circuitry while limiting the neuropathological consequences that attend other surgical procedures. Moreover, this strategy allows conformal targeting, which could enhance the precision and expand the treatment envelope for treating irregularly shaped surgical objectives located in difficult-to-reach sites. Finally, if this strategy translates to the clinic, the noninvasive nature and specificity of the procedure could positively influence both physician referrals for and patient confidence in surgery for medically intractable neurological disorders.

9.
Int J Pharm ; 609: 121154, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34624449

RESUMO

Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management. The antibiotic vancomycin was chemically coupled to the lipid shell of microbubbles and validated using mass spectrometry and high-axial resolution 4Pi confocal microscopy. Theranostic proof-of-principle was investigated by demonstrating the specific binding of vancomycin-decorated microbubbles (vMB) to statically and flow grown Staphylococcus aureus (S. aureus) biofilms under increasing shear stress flow conditions (0-12 dyn/cm2), as well as confirmation of microbubble oscillation and biofilm disruption upon ultrasound exposure (2 MHz, 250 kPa, and 5,000 or 10,000 cycles) during flow shear stress of 5 dyn/cm2 using time-lapse confocal microscopy combined with the Brandaris 128 ultra-high-speed camera. Vancomycin was successfully incorporated into the microbubble lipid shell. vMB bound significantly more often than control microbubbles to biofilms, also in the presence of free vancomycin (up to 1000 µg/mL) and remained bound under increasing shear stress flow conditions (up to 12 dyn/cm2). Upon ultrasound insonification biofilm area was reduced of up to 28%, as confirmed by confocal microscopy. Our results confirm the successful production of vMB and support their potential as a new theranostic tool for S. aureus biofilm infections by allowing for specific bacterial detection and biofilm disruption.


Assuntos
Staphylococcus aureus , Vancomicina , Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Microbolhas , Medicina de Precisão
10.
J Vis Exp ; (175)2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34542531

RESUMO

Targeting of microbubbles (ultrasound contrast agents for molecular imaging) has been researched for more than two decades. However, methods of microbubble preparation and targeting ligand attachment are cumbersome, complicated, and lengthy. Therefore, there is a need to simplify the targeted microbubble preparation procedure to bring it closer to clinical translation. The purpose of this publication is to provide a detailed description and explanation of the steps necessary for targeted microbubble preparation, functional characterization and testing. A sequence of the optimized and simplified procedures is presented for two systems: a biotin-streptavidin targeting pair model, and a cyclic RGD peptide targeting the recombinant αvß3 protein, which is overexpressed on the endothelial lining of the tumor neovasculature. Here, we show the following: covalent coupling of the targeting ligand to a lipid anchor, assessment of the reagent quality, and tests that confirm the successful completion of the reaction; preparation of the aqueous precursor medium containing microbubble shell components, followed by microbubble preparation via amalgamation; assessment of the efficacy of lipid transfer onto the microbubble stabilizer shell; adjustment of microbubble size distribution by flotation at normal gravity to remove larger microbubbles that might be detrimental for in vivo use; assessment of microbubble size distribution by electrozone sensing; evaluation of targeted binding of the microbubbles to receptor-coated surface in a static binding assay test (in an inverted dish); and evaluation of targeted binding of the microbubbles to receptor-coated surface in a parallel plate flow chamber test.


Assuntos
Meios de Contraste , Microbolhas , Imagem Molecular , Estreptavidina , Ultrassonografia
11.
Ultrasound Med Biol ; 47(11): 3240-3252, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376299

RESUMO

Ultrasound molecular imaging techniques rely on the separation and identification of three types of signals: static tissue, adherent microbubbles and non-adherent microbubbles. In this study, the image filtering techniques of singular value thresholding (SVT) and normalized singular spectrum area (NSSA) were combined to isolate and identify vascular endothelial growth factor receptor 2-targeted microbubbles in a mouse hindlimb tumor model (n = 24). By use of a Verasonics Vantage 256 imaging system with an L12-5 transducer, a custom-programmed pulse inversion sequence employing synthetic aperture virtual source element imaging was used to collect contrast images of mouse tumors perfused with microbubbles. SVT was used to suppress static tissue signals by 9.6 dB while retaining adherent and non-adherent microbubble signals. NSSA was used to classify microbubble signals as adherent or non-adherent with high accuracy (receiver operating characteristic area under the curve [ROC AUC] = 0.97), matching the classification performance of differential targeted enhancement. The combined SVT + NSSA filtering method also outperformed differential targeted enhancement in differentiating MB signals from all other signals (ROC AUC = 0.89) without necessitating destruction of the contrast agent. The results from this study indicate that SVT and NSSA can be used to automatically segment and classify contrast signals. This filtering method with potential real-time capability could be used in future diagnostic settings to improve workflow and speed the clinical uptake of ultrasound molecular imaging techniques.


Assuntos
Microbolhas , Fator A de Crescimento do Endotélio Vascular , Animais , Meios de Contraste , Camundongos , Imagem Molecular , Ultrassonografia
12.
Int J Nanomedicine ; 16: 5495-5512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429596

RESUMO

PURPOSE: Chronic pancreatitis (CP) is an inflammatory disorder of the pancreas that leads to impaired pancreatic function. The limited therapeutic options and the lack of molecular targeting ligands or non-serum-based biomarkers hinder the development of target-specific drugs. Thus, there is a need for an unbiased, comprehensive discovery and evaluation of pancreatitis-specific ligands. METHODS: This study utilized a computational-guided in vivo phage display approach to select peptide ligands selective for cellular components in the caerulein-induced mouse model of CP. The identified peptides were conjugated to pegylated DOPC liposomes via the reverse-phase evaporation method, and the in vivo specificity and pharmacokinetics were determined. As proof of concept, CP-targeted liposomes were used to deliver an antifibrotic small molecular drug, apigenin. Antifibrotic effects determined by pancreatic histology, fibronectin expression, and collagen deposition were evaluated. RESULTS: We have identified five peptides specific for chronic pancreatitis and demonstrated selectivity to activated pancreatic stellate cells, acinar cells, macrophages, and extracellular matrix, respectively. MDLSLKP-conjugated liposomes demonstrated an increased particle accumulation by 1.3-fold in the inflamed pancreas compared to the control liposomes. We also observed that targeted delivery of apigenin resulted in improved acini preservation, a 37.2% and 33.1% respective reduction in collagen and fibronectin expression compared to mice receiving the free drug, and reduced oxidative stress in the liver. CONCLUSION: In summary, we have developed a systematic approach to profile peptide ligands selective for cellular components of complex disease models and demonstrated the biomedical applications of the identified peptides to improve tissue remodeling in the inflamed pancreas.


Assuntos
Pancreatite Crônica , Animais , Ceruletídeo , Ligantes , Camundongos , Pâncreas , Células Estreladas do Pâncreas , Pancreatite Crônica/tratamento farmacológico
13.
Bioeng Transl Med ; 6(2): e10198, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027087

RESUMO

Focused ultrasound (FUS) mediated blood-brain barrier disruption (BBBD) targets the delivery of systemically-administered therapeutics to the central nervous system. Preclinical investigations of BBBD have been performed on different anesthetic backgrounds; however, the influence of the choice of anesthetic on the molecular response to BBBD is unknown, despite its potential to critically affect interpretation of experimental therapeutic outcomes. Here, using bulk RNA sequencing, we comprehensively examined the transcriptomic response of both normal brain tissue and brain tissue exposed to FUS-induced BBBD in mice anesthetized with either isoflurane with medical air (Iso) or ketamine/dexmedetomidine (KD). In normal murine brain tissue, Iso alone elicited minimal differential gene expression (DGE) and repressed pathways associated with neuronal signaling. KD alone, however, led to massive DGE and enrichment of pathways associated with protein synthesis. In brain tissue exposed to BBBD (1 MHz, 0.5 Hz pulse repetition frequency, 0.4 MPa peak-negative pressure), we systematically evaluated the relative effects of anesthesia, microbubbles, and FUS on the transcriptome. Of particular interest, we observed that gene sets associated with sterile inflammatory responses and cell-cell junctional activity were induced by BBBD, regardless of the choice of anesthesia. Meanwhile, gene sets associated with metabolism, platelet activity, tissue repair, and signaling pathways, were differentially affected by BBBD, with a strong dependence on the anesthetic. We conclude that the underlying transcriptomic response to FUS-mediated BBBD may be powerfully influenced by anesthesia. These findings raise considerations for the translation of FUS-BBBD delivery approaches that impact, in particular, metabolism, tissue repair, and intracellular signaling.

16.
J Thorac Cardiovasc Surg ; 161(4): e297-e306, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31839230

RESUMO

OBJECTIVE: Acute hyperglycemia during myocardial infarction worsens outcomes in part by inflammatory mechanisms. Pulsed ultrasound has anti-inflammatory potential in bone healing and neuromodulation. We hypothesized that pulsed ultrasound would attenuate the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury via the cholinergic anti-inflammatory pathway. METHODS: Acute hyperglycemia was induced in wild-type C57BL6 or acetylcholine-receptor knockout (α7nAChR-/-) mice by intraperitoneal injection of glucose. Pulsed ultrasound (frequency 7 MHz, bursting mechanical index 1.2, duration 1 second, repeated every 6 seconds for 2 minutes, 20-second total exposure) was performed at the spleen or neck after glucose injection. Separate mice underwent vagotomy before treatment. The left coronary artery was occluded for 20 minutes, followed by 60 minutes of reperfusion. The primary end point was infarct size in explanted hearts. RESULTS: Splenic pulsed ultrasound significantly decreased infarct size in wild-type C57BL6 mice exposed to acute hyperglycemia and myocardial ischemia-reperfusion injury (5.2% ± 4.4% vs 16.9% ± 12.5% of risk region, P = .013). Knockout of α7nAChR abrogated the beneficial effect of splenic pulsed ultrasound (22.2% ± 12.1%, P = .79 vs control). Neck pulsed ultrasound attenuated the hyperglycemic exacerbation of myocardial infarct size (3.5% ± 4.8%, P = .004 vs control); however, the cardioprotective effect disappeared in mice that underwent vagotomy. Plasma acetylcholine, ß2 adrenergic receptor, and phosphorylated Akt levels were increased after splenic pulsed ultrasound treatment. CONCLUSIONS: Pulsed ultrasound treatment of the spleen or neck attenuated the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury leading to a 3-fold decrease in infarct size. Pulsed ultrasound may provide cardioprotection via the cholinergic anti-inflammatory pathway and could be a promising new nonpharmacologic, noninvasive therapy to reduce infarct size during acute myocardial infarction and improve patient outcomes.


Assuntos
Hiperglicemia/complicações , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Terapia por Ultrassom , Acetilcolina/metabolismo , Animais , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Baço , Ondas Ultrassônicas
17.
Invest Radiol ; 56(4): 197-206, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976207

RESUMO

OBJECTIVES: Ultrasound contrast agents, consisting of gas-filled microbubbles (MBs), have been imaged using several techniques that include ultrasound localization microscopy and targeted molecular imaging. Each of these techniques aims to provide indicators of the disease state but has traditionally been performed independently without co-localization of molecular markers and super-resolved vessels. In this article, we present a new imaging technology: a targeted molecular localization (TML) approach, which uses a single imaging sequence and reconstruction approach to co-localize super-resolved vasculature with molecular imaging signature to provide simultaneous anatomic and biological information for potential multiscale disease evaluation. MATERIALS AND METHODS: The feasibility of the proposed TML technique was validated in a murine hindlimb tumor model. Targeted molecular localization imaging was performed on 3 groups, which included control tissue (leg), tumor tissue, and tumor tissue after sunitinib an-tivascular treatment. Quantitative measures for vascular index (VI) and molecular index (MITML) were calculated from the microvasculature and TML images, respectively. In addition to these conventional metrics, a new metric unique to the TML technique, reporting the ratio of targeted molecular index to vessel surface, was assessed. RESULTS: The quantitative resolution results of the TML approach showed resolved resolution of the microvasculature down to 28.8 µm. Vascular index increased in tumors with and without sunitinib compared with the control leg, but the trend was not statistically significant. A decrease in MITML was observed for the tumor after treatment (P < 0.0005) and for the control leg (P < 0.005) compared with the tumor before treatment. Statistical differences in the ratio of molecular index to vessel surface were found between all groups: the control leg and tumor (P < 0.05), the control leg and tumor after sunitinib treatment (P < 0.05), and between tumors with and without sunitinib treatment (P < 0.001). CONCLUSIONS: These findings validated the technical feasibility of the TML method and pre-clinical feasibility for differentiating between the normal and diseased tissue states.


Assuntos
Microbolhas , Neoplasias , Animais , Meios de Contraste , Camundongos , Microvasos/diagnóstico por imagem , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ultrassonografia
18.
Ultrasound Med Biol ; 47(3): 620-639, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309443

RESUMO

The study described here examined the effects of cavitation nuclei characteristics on histotripsy. High-speed optical imaging was used to compare bubble cloud behavior and ablation capacity for histotripsy generated from intrinsic and artificial cavitation nuclei (gas-filled microbubbles, fluid-filled nanocones). Results showed a significant decrease in the cavitation threshold for microbubbles and nanocones compared with intrinsic-nuclei controls, with predictable and well-defined bubble clouds generated in all cases. Red blood cell experiments showed complete ablations for intrinsic and nanocone phantoms, but only partial ablation in microbubble phantoms. Results also revealed a lower rate of ablation in artificial-nuclei phantoms because of reduced bubble expansion (and corresponding decreases in stress and strain). Overall, this study demonstrates the potential of using artificial nuclei to reduce the histotripsy cavitation threshold while highlighting differences in the bubble cloud behavior and ablation capacity that need to be considered in the future development of these approaches.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Microbolhas , Nanoestruturas , Imagens de Fantasmas
19.
Int J Biol Macromol ; 169: 330-341, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310092

RESUMO

Vancomycin-loaded N,N-dodecyl,methyl-polyethylenimine nanoparticles coated with hyaluronic acid (VCM-DMPEI nanoparticles/HA) were synthesized as an adjuvant for the treatment of bacterial endophthalmitis. The nanoparticles were formulated by experimental statistical design, thoroughly characterized, and evaluated in terms of bactericidal activity and both in vitro and in vivo ocular biocompatibility. The VCM-DMPEI nanoparticles/HA were 154 ± 3 nm in diameter with a 0.197 ± 0.020 polydispersity index; had a + 26.4 ± 3.3 mV zeta potential; exhibited a 93% VCM encapsulation efficiency; and released 58% of the encapsulated VCM over 96 h. VCM and DMPEI exhibited a synergistic bactericidal effect. The VCM-DMPEI nanoparticles/HA were neither toxic to ARPE-19 cells nor irritating to the chorioallantoic membrane. Moreover, the VCM-DMPEI nanoparticles/HA did not induce modifications in retinal functions, as determined by electroretinography, and in the morphology of the ocular tissues. In conclusion, the VCM-DMPEI nanoparticles/HA may be a useful therapeutic adjuvant to treat bacterial endophthalmitis.


Assuntos
Endoftalmite/tratamento farmacológico , Polietilenoimina/análogos & derivados , Vancomicina/farmacologia , Antibacterianos/farmacologia , Linhagem Celular , Portadores de Fármacos , Liberação Controlada de Fármacos , Olho/efeitos dos fármacos , Humanos , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Nanopartículas , Tamanho da Partícula , Polietilenoimina/química , Polietilenoimina/farmacologia , Vancomicina/química
20.
Invest Radiol ; 56(1): 50-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181574

RESUMO

Gas-filled microbubbles are currently in clinical use as blood pool contrast agents for ultrasound imaging. The goal of this review is to discuss the trends and issues related to these relatively unusual intravascular materials, which are not small molecules per se, not polymers, not even nanoparticles, but larger micrometer size structures, compressible, flexible, elastic, and deformable. The intent is to connect current research and initial studies from 2 to 3 decades ago, tied to gas exchange between the bubbles and surrounding biological medium, in the following areas of focus: (1) parameters of microbubble movement in relation to vasculature specifics; (2) gas uptake and loss from the bubbles in the vasculature; (3) adhesion of microbubbles to target receptors in the vasculature; and (4) microbubble interaction with the surrounding vessels and tissues during insonation.Microbubbles are generally safe and require orders of magnitude lower material doses than x-ray and magnetic resonance imaging contrast agents. Application of microbubbles will soon extend beyond blood pool contrast and tissue perfusion imaging. Microbubbles can probe molecular and cellular biomarkers of disease by targeted contrast ultrasound imaging. This approach is now in clinical trials, for example, with the aim to detect and delineate tumor nodes in prostate, breast, and ovarian cancer. Imaging of inflammation, ischemia-reperfusion injury, and ischemic memory is also feasible. More importantly, intravascular microbubbles can be used for local deposition of focused ultrasound energy to enhance drug and gene delivery to cells and tissues, across endothelial barrier, especially blood-brain barrier.Overall, microbubble behavior, stability and in vivo lifetime, bioeffects upon the action of ultrasound and resulting enhancement of drug and gene delivery, as well as targeted imaging are critically dependent on the events of gas exchange between the bubbles and surrounding media, as outlined in this review.


Assuntos
Sistema Cardiovascular , Meios de Contraste , Microbolhas , Ultrassonografia , Sistema Cardiovascular/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Imagem de Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...