Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6686): 992-998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422143

RESUMO

Touch perception is enabled by mechanically activated ion channels, the opening of which excites cutaneous sensory endings to initiate sensation. In this study, we identify ELKIN1 as an ion channel likely gated by mechanical force, necessary for normal touch sensitivity in mice. Touch insensitivity in Elkin1-/- mice was caused by a loss of mechanically activated currents (MA currents) in around half of all sensory neurons activated by light touch (low-threshold mechanoreceptors). Reintroduction of Elkin1 into sensory neurons from Elkin1-/- mice restored MA currents. Additionally, small interfering RNA-mediated knockdown of ELKIN1 from induced human sensory neurons substantially reduced indentation-induced MA currents, supporting a conserved role for ELKIN1 in human touch. Our data identify ELKIN1 as a core component of touch transduction in mice and potentially in humans.


Assuntos
Canais Iônicos , Mecanorreceptores , Mecanotransdução Celular , Proteínas de Membrana , Células Receptoras Sensoriais , Percepção do Tato , Animais , Humanos , Camundongos , Células HEK293 , Canais Iônicos/genética , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , RNA Interferente Pequeno , Tato , Camundongos Mutantes , Masculino , Feminino
2.
J Physiol ; 600(4): 751-767, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490628

RESUMO

Temporal partitioning of daily food intake is crucial for survival and involves the integration of internal circadian states and external influences such as the light-dark cycle and dietary composition. These intrinsic and extrinsic factors are interdependent with misalignment of circadian rhythms promoting body weight gain, while consumption of a calorie-dense diet elevates the risk of obesity and blunts circadian rhythms. Recently, we defined the circadian properties of the dorsal vagal complex of the brainstem, a structure implicated in the control of food intake and autonomic tone, but whether and how 24 h rhythms in this area are influenced by diet remains unresolved. Here we focused on a key structure of this complex, the nucleus of the solitary tract (NTS). We used a combination of immunohistochemical and electrophysiological approaches together with daily monitoring of body weight and food intake to interrogate how the neuronal rhythms of the NTS are affected by a high-fat diet. We report that short-term consumption of a high-fat diet increases food intake during the day and blunts NTS daily rhythms in neuronal discharge. Additionally, we found that a high-fat diet dampens NTS responsiveness to metabolic neuropeptides, and decreases orexin immunoreactive fibres in this structure. These alterations occur without prominent body weight gain, suggesting that a high-fat diet acts initially to reduce activity in the NTS to disinhibit mechanisms that suppress daytime feeding. KEY POINTS: The dorsal vagal complex of the rodent hindbrain possesses intrinsic circadian timekeeping mechanisms In particular, the nucleus of the solitary tract (NTS) is a robust circadian oscillator, independent of the master suprachiasmatic clock Here, we reveal that rat NTS neurons display timed daily rhythms in their neuronal activity and responsiveness to ingestive cues These daily rhythms are blunted or eliminated by a short-term high-fat diet, together with increased consumption of calories during the behaviourally quiescent day Our results help us better understand the circadian control of satiety by the brainstem and its malfunctioning under a high-fat diet.


Assuntos
Dieta Hiperlipídica , Núcleo Solitário , Animais , Ritmo Circadiano/fisiologia , Ingestão de Alimentos/fisiologia , Neurônios/metabolismo , Ratos , Núcleo Solitário/metabolismo
3.
J Physiol ; 600(4): 733-749, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34053067

RESUMO

KEY POINTS: Recently, we found that the dorsal vagal complex displays autonomous circadian timekeeping properties  The dorsal motor nucleus of the vagus (DMV) is an executory part of this complex - a source of parasympathetic innervation of the gastrointestinal tract  Here, we reveal daily changes in the neuronal activities of the rat DMV, including firing rate, intrinsic excitability and synaptic input - all of these peaking in the late day  Additionally, we establish that short term high-fat diet disrupts these daily rhythms, boosting the variability in the firing rate, but blunting the DMV responsiveness to ingestive cues  These results help us better understand daily control over parasympathetic outflow and provide evidence on its dependence on the high-fat diet ABSTRACT: The suprachiasmatic nuclei (SCN) of the hypothalamus function as the brain's primary circadian clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites where they can exert local temporal control over physiology and behaviour. Recently, we found that the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility that the executory part of this complex - the dorsal motor nucleus of the vagus (DMV) - also exhibits daily changes has not been extensively studied. The DMV is the source of vagal efferent motoneurons that regulate gastric motility and emptying and consequently influence meal size and energy homeostasis. We used a combination of multi-channel electrophysiology and patch clamp recordings to gain insight into effects of time of day and diet on these DMV cells. We found that DMV neurons increase their spontaneous activity, excitability and responsiveness to metabolic neuromodulators at late day and this was paralleled with an enhanced synaptic input to these neurons. A high-fat diet typically damps circadian rhythms, but we found that consumption of a high-fat diet paradoxically amplified daily variation of DMV neuronal activity, while blunting the neurons responsiveness to metabolic neuromodulators. In summary, we show for the first time that DMV neural activity changes with time of day, with this temporal variation modulated by diet. These findings have clear implications for our understanding of the daily control of vagal efferents and parasympathetic outflow.


Assuntos
Tronco Encefálico , Dieta Hiperlipídica , Animais , Tronco Encefálico/fisiologia , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...