Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 23(4): 2609-2618, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37038398

RESUMO

We report on single crystal growth of laser material Nd:YAG widely used in the applications by the innovative crucible-free floating zone method implemented in an advanced laser optical furnace. We have optimized the parameters for the production of high-quality single crystals of the size typical for laser rods. To reduce the strain and improve machinability, we have developed an afterheater to thermalize the grown part of a single crystal below the hot zone, which is a technique unavailable in common mirror furnaces. The high quality of the single crystals was verified by Laue diffraction, and the internal strain was documented by neutron diffraction. The absorption spectrum corresponds with the parameters of the commercially used material produced by the Czochralski method. The presented methodology for the single crystal growth by the floating zone method with laser heating is applicable for the preparation of other high-quality single crystals of oxide-based materials, particularly in an oxidizing environment unattainable in commonly used crucible methods.

2.
J Phys Condens Matter ; 33(3)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33078718

RESUMO

Pressure induced superconductivity in non-centrosymmetric CeRhSi3and CeIrSi3compounds has attracted significant attention of the scientific community since its discovery 15 years ago. Up-to-date, all reported experimental results were obtained employing the hybrid-cylinder piston pressure cells with a maximum reachable pressure of 3 GPa. Present study focuses on the superconducting state at higher, so far unreported, pressures using the Bridgman anvil cell and a CeRhSi3single crystal synthesized by the Sn-true-flux method. The initial increase of superconducting critical temperature from 0.4 K at 1.1 GPa to 1.1 K at 2.4 GPa is followed by a gradual suppression of superconducting state upon increasing the pressure above 3.0 GPa, forming a typical dome. The pressure induced superconductivity is expected to be completely suppressed in the pressure region between 4.5 and 5.0 GPa. Temperature dependence of electrical resistivity in constant magnetic fields and high pressures, as well as the magnetoresistance measurements, reveal a large critical field, exceeding 19 T at 0.6 K and 2.4 GPa, sharply decreasing receding the superconductivity dome. The previously reportedT-pandH-Tphase diagrams are completed by our high-pressure data and discussed in the frame of previous results.

3.
J Phys Condens Matter ; 32(34): 345801, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217825

RESUMO

Anisotropy of bulk magnetic properties and magnetic structure studies of a Tb2Pd2In single crystal by means of bulk magnetization methods and neutron diffraction techniques confirmed the antiferromagnetic order below the Néel temperature 29.5 K. The collinear magnetic structure of Tb magnetic moments aligned along the tetragonal c-axis is characterized by a propagation vector k = (1/4, 1/4, 1/2), yielding an equal-moment structure with alternating coupling between nearest as well as next-nearest Tb neighbors within the basal plane and antiferromagnetic coupling between the c-axis neighbors. In the context of magnetism of R2T2X compounds, where R stands for rare-earth or actinide element, such collinear structure with long-wavelength periodicity represents a new type of magnetic structure.

4.
J Phys Condens Matter ; 31(38): 385601, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31170703

RESUMO

CeCuAl3 and CeAuAl3, crystallizing in the non-centrosymmetric BaNiSn3 tetragonal structure, are known mainly for their unusual neutron scattering spectra involving additional excitations ascribed to vibron quasi-bound quantum state in CeCuAl3 and anti-crossing of phonon and crystal field excitations in CeAuAl3. In this work, we present results of nuclear magnetic resonance (NMR) experiments on their lanthanum analogues-[Formula: see text] and [Formula: see text]. The character of NMR spectra of [Formula: see text], [Formula: see text], and 65Cu measured in [Formula: see text] and [Formula: see text] is dominated by electric quadrupole interaction. The spectral parameters acquired from experimental data are confronted with values obtained from the electronic structure calculations. The results show remarkable differences for the two compounds. The [Formula: see text] spectrum in [Formula: see text] can be interpreted by a single spectral component corresponding to uniform environment of La atoms in the crystal structure, whereas for [Formula: see text] the spectrum decomposition yields a wide distribution of spectral parameters, which is not possible to explain by a single La environment, and multiple non-equivalent La positions in the crystal structure are required to interpret the spectrum.

5.
J Phys Condens Matter ; 30(23): 235802, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29697406

RESUMO

YFeO3 and LaFeO3 are members of the rare-earth orthoferrites family with Pbnm space group. Using inelastic neutron scattering, the low-energy spin excitations have been measured around the magnetic Brillouin zone center. Splitting of magnon branches and finite magnon gaps (∼2 meV) are observed for both compounds, where the Dzyaloshinsky-Moriya interactions account for most of this gap with some additional contribution from single-ion anisotropy. We also make comparisons with multiferroic BiFeO3 (R3c space group), in which similar behavior was observed. By taking into account all relevant local Dzyaloshinsky-Moriya interactions, our analysis allows for the precise determination of all experimentally observed parameters in the spin-Hamiltonian. We find that different properties of the Pbnm and R3c space group lead to the stabilization of a spin cycloid structure in the latter case but not in the former, which explains the difference in the levels of complexity of magnon band structures for the respective compounds.

6.
Inorg Chem ; 56(21): 12839-12847, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984447

RESUMO

CeCuAl3 crystallizing in the tetragonal BaNiSn3-type structure and CeCuxAl4-x solid solutions were investigated by means of elastic and inelastic neutron scattering. Powder neutron diffraction brought information on both temperature evolution of crystallographic parameters and magnetic order at low temperatures. No structural change was observed in the investigated temperature range from 1.5 to 300 K. Weak magnetic peaks outside nuclear Bragg positions observed in solid solutions with 0.90 ≤ x ≤ 1.10 were described by the propagation vector k = (0.40 + δx, 0.60 + δy, 0), where δx ≈ 0.02 and δy ≈ 0.01. The magnetic structure of CeCu0.75Al3.25 consists of two components: an anti-ferromagnetic one described by the same k and a ferromagnetic one with k0 = (0, 0, 0) and magnetic moments lying within the tetragonal basal plane. The evolution of magnetic excitations as a function of Cu-Al concentration in CeCuxAl4-x was studied by inelastic neutron scattering. The measured spectra of CeCuAl3 and the solution with x = 0.95 point to a three-magnetic-peak energy scheme, while only two excitations are expected from the local symmetry conditions on Ce atoms. The standard two-peak spectrum of crystal electric field excitations was observed for Cu-Al substitutions further from the 1:1:3 stoichiometry (x = 0.75 and 1.10). The intermediate concentrations (x = 0.90 and 1.05) exhibit spectra on the border between the former cases with a less clear pronounced first inelastic magnetic peak. The observed behavior is discussed considering the evolution of structural parameters in the CeCuxAl4-x system and the coupling between the lattice vibrations and the crystal electric field excitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...