Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 23(3): 783-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18948382

RESUMO

Senescence is a potential tumor-suppressing mechanism and a commonly used model of cellular aging. One current hypothesis to explain senescence, based in part on the correlation of oxygen with senescence, postulates that it is caused by oxidative damage from reactive oxygen species (ROS). Here, we further test this theory by determining the mechanisms of hyperoxia-induced senescence. Exposure to 70% O(2) led to stress-induced, telomere-independent senescence. Although hyperoxia elevated mitochondrial ROS production, overexpression of antioxidant proteins was not sufficient to prevent hyperoxia-induced senescence. Hyperoxia activated AMPK; however, overexpression of a kinase-dead mutant of LKB1, which prevented AMPK activation, did not prevent hyperoxia-induced senescence. Knocking down p21 via shRNA, or suppression of the p16/pRb pathway by either BMI1 or HPV16-E7 overexpression, was also insufficient to prevent hyperoxia-induced senescence. However, suppressing p53 function resulted in partial rescue from senescence, suggesting that hyperoxia-induced senescence involves p53. Suppressing both the p53 and pRb pathways resulted in almost complete protection, indicating that both pathways cooperate in hyperoxia-induced senescence. Collectively, these results indicate a ROS-independent but p53/pRb-dependent senescence mechanism during hyperoxia.


Assuntos
Senescência Celular/fisiologia , Hiperóxia , Mitocôndrias/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Células Cultivadas , Citosol/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Pulmão/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/genética , Ribonucleotídeos , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética
2.
J Cell Biol ; 177(6): 1029-36, 2007 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-17562787

RESUMO

Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) protein. How cells transduce hypoxic signals to stabilize the HIF-1alpha protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1alpha protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b-null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Qo site of complex III. These interventions maintained hydroxylation of HIF-1alpha protein and prevented stabilization of HIF-1alpha protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1alpha protein and prevented stabilization of HIF-1alpha protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1alpha protein and stabilized HIF-1alpha protein. These results provide genetic and pharmacologic evidence that the Qo site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1alpha protein.


Assuntos
Hipóxia Celular , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Citocromos b , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Mol Cell Biol ; 27(16): 5737-45, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17562866

RESUMO

Physiological hypoxia extends the replicative life span of human cells in culture. Here, we report that hypoxic extension of replicative life span is associated with an increase in mitochondrial reactive oxygen species (ROS) in primary human lung fibroblasts. The generation of mitochondrial ROS is necessary for hypoxic activation of the transcription factor hypoxia-inducible factor (HIF). The hypoxic extension of replicative life span is ablated by a dominant negative HIF. HIF is sufficient to induce telomerase reverse transcriptase mRNA and telomerase activity and to extend replicative life span. Furthermore, the down-regulation of the von Hippel-Lindau tumor suppressor protein by RNA interference increases HIF activity and extends replicative life span under normoxia. These findings provide genetic evidence that hypoxia utilizes mitochondrial ROS as signaling molecules to activate HIF-dependent extension of replicative life span.


Assuntos
Senescência Celular , Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/efeitos dos fármacos , Oxigênio/farmacologia , Telomerase/genética , Termodinâmica , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA