Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(1): 120-126, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38099713

RESUMO

Chemical screening efforts recently found that 3-phenoxybenzaldehyde, a breakdown product of alpha-cyano pyrethroids, was a potent spatial repellent against Aedes aegypti mosquitoes in a glass tube repellency assay. In order to characterize this molecule further and identify structure-activity relationships, a set of 12 benzaldehyde analogues were screened for their repellency and toxicity in vapor phase exposures at 100 µg/cm2. Dose-response analyses were performed for the most active compounds in order to better characterize their repellent potency and toxicity compared to those of other commercially available toxicants. The three most toxic compounds (LC50 values) were 3-chlorobenzaldehyde (CBA) (37 µg/cm2), biphenyl-3-carboxaldehyde (BCA) (48 µg/cm2), and 3-vinylbenzaldehyde (66 µg/cm2), which makes them less toxic than bioallethrin (6.1 µg/cm2) but more toxic than sandalwood oil (77 µg/cm2), a repellent/toxic plant essential oil. The most repellent analogues with EC50 values below 30 µg/cm2 were 3-phenoxybenzaldehyde (6.3 µg/cm2), isophthalaldehyde (23 µg/cm2), BCA (17 µg/cm2), and CBA (22 µg/cm2), which makes them about as active as N,N-diethyl-3-methylbenzamide (25.4 µg/cm2). We further investigated the activity of a select group of these benzaldehydes to block the firing of the central nervous system of A. aegypti larvae. Compounds most capable of repelling and killing mosquitoes in the vapor phase were also those most capable of blocking nerve firing in the larval mosquito nervous system. The results demonstrate that benzaldehyde analogues are viable candidate repellent and insecticidal molecules and may lead to the development of future repellent and vapor toxic vector control tools.


Assuntos
Aedes , Benzamidas , Repelentes de Insetos , Animais , Benzaldeídos/farmacologia , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Larva
2.
Pest Manag Sci ; 79(3): 1175-1183, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36424673

RESUMO

BACKGROUND: The sterile insect technique (SIT) is emerging as a tool to supplement traditional pesticide-based control of Aedes aegypti, a prominent mosquito vector of microbes that has increased the global burden of human morbidity and mortality over the past 50 years. SIT relies on rearing, sterilizing and releasing large numbers of male mosquitoes that will mate with fertile wild females, thus reducing production of offspring from the target population. In this study, we investigated the effects of ionizing radiation (gamma) on male and female survival, longevity, mating behavior, and sterility of Ae. aegypti in a dose-response design. This work is a first step towards developing an operational SIT field suppression program against Ae. aegypti in St. Augustine, Florida, USA. RESULTS: Exposing late-stage pupae to 50 Gy of radiation yielded 99% male sterility while maintaining similar survival of pupae to adult emergence, adult longevity and male mating competitiveness compared to unirradiated males. Females were completely sterilized at 30 Gy, and when females were dosed with 50 Gy, they had a lower incidence of blood-feeding than unirradiated females. CONCLUSION: Our work suggests that an ionizing radiation dose of 50 Gy should be used for future development of operational SIT in our program area because at this dose males are 99% sterile while maintaining mating competitiveness against unirradiated males. Furthermore, females that might be accidentally released with sterile males as a result of errors in sex sorting also are sterile and less likely to blood-feed than unirradiated females at our 50 Gy dose. © 2022 Society of Chemical Industry.


Assuntos
Aedes , Controle de Mosquitos , Animais , Feminino , Masculino , Aedes/fisiologia , Fertilidade , Infertilidade Masculina , Insetos , Controle de Mosquitos/métodos , Comportamento Sexual Animal
3.
J Vis Exp ; (169)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33779612

RESUMO

The control of such human diseases as dengue, Zika, and chikungunya relies on the control of their vector, the Aedes aegypti mosquito, because there is no prevention. Control of mosquito vectors can rely on chemicals applied to the immature and adult stages, which can contribute to the mortality of non-targets and more importantly, lead to insecticide resistance in the vector. The sterile insect technique (SIT) is a method of controlling populations of pests through the release of sterilized adult males that mate with wild females to produce non-viable offspring. This paper describes the process of producing sterile males for use in an operational SIT program for the control of Aedes aegypti mosquitoes. Outlined here are the steps used in the program including rearing and maintaining a colony, separating male and female pupae, irradiating and marking adult males, and shipping Aedes aegypti males to the release site. Also discussed are procedural caveats, program limitations, and future objectives.


Assuntos
Aedes/fisiologia , Fertilidade/efeitos da radiação , Resistência a Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Pupa/fisiologia , Esterilização Reprodutiva/métodos , Aedes/efeitos da radiação , Animais , Feminino , Humanos , Masculino , Mosquitos Vetores/efeitos da radiação , Pupa/efeitos da radiação
5.
J Am Mosq Control Assoc ; 36(3): 152-160, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600583

RESUMO

Aedes aegypti is a prominent disease vector that is difficult to control through traditional integrated vector management due to its cryptic peridomestic immature-stage habitat and adult resting behavior, increasing resistance to pesticide formulations approved by the US Environmental Protection Agency, escalating deregistration of approved pesticides, and slow development of new effective chemical control measures. One novel method to control Ae. aegypti is the sterile insect technique (SIT) that leverages the mass release of irradiated (sterilized) males to overwhelm mate choice of natural populations of females. However, one potential liability of SIT is sex sorting errors prior to irradiation, resulting in accidental release of females. Our goal in this study was to test the extent to which irradiation affects female life-history parameters to assess the potential impacts of releasing irradiated females accidentally sorted with males. In this study, we determined that a radiation dose ≥30 Gy-a dose sufficient to sterilize males while preserving their mating competitiveness-may substantially impact longevity, bloodfeeding, oviposition, and egg hatch rate of female Ae. aegypti after being irradiated as pupae. These findings could reduce public concern for accidental release of females alongside irradiated males in an operational Ae. aegypti SIT control program.


Assuntos
Aedes/efeitos da radiação , Raios gama , Controle de Mosquitos/estatística & dados numéricos , Oviposição/efeitos da radiação , Aedes/fisiologia , Animais , Relação Dose-Resposta à Radiação , Comportamento Alimentar/efeitos da radiação , Feminino , Longevidade/efeitos da radiação
6.
J Med Entomol ; 57(1): 17-24, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31586442

RESUMO

Testing behavioral response to insecticidal volatiles requires modifications to the existing designs of olfactometers. To create a testing apparatus in which there is no chemical memory to confound tests, we detail the technical aspects of a new tool with design influences from other olfactometry tools. In addition, this new tool was used to evaluate a novel formulation of metofluthrin for use as an outdoor residual treatment. After sourcing materials to prioritize glass and metal construction, a modular wind tunnel was developed that hybridizes wind tunnel and olfactometer specifications. Volatile contaminants were removed by strong ultraviolet light within the chamber before and between trials. Repellent trials were conducted with an experimental formulation of metofluthrin and a commercial formulation of esfenvalerate, prallethrin, and piperonyl butoxide (Onslaught Fast Cap) against Aedes albopictus (Skuse). Toxicant vapors were delivered with attractants from a lure with behavioral responses scored 20 min post-exposure. Upwind attraction to the attractant lure and the Onslaught Fast Cap plus lure resulted in 90 and 75% capture, respectively. In contrast, metofluthrin vapors resulted in less than 10% attraction, while also causing repellency, disorientation, knockdown, and mortality effects. Our findings demonstrated that an inert modular wind tunnel was functional for mitigating toxic secondary exposures of spatial repellents amidst complex behavioral analysis in mosquitoes. The resulting observations with formulated metofluthrin positively reinforce the merit of transitioning metofluthrin into expanded roles in mosquito management.


Assuntos
Aedes , Quimiotaxia , Ciclopropanos , Fluorbenzenos , Inseticidas , Aedes/fisiologia , Animais , Aprendizagem da Esquiva , Olfatometria
7.
Artigo em Inglês | MEDLINE | ID: mdl-31035536

RESUMO

Mosquitoes continue to be a major threat to global health, and the ability to reliably monitor, catch, and kill mosquitoes via passive traps is of great importance. Global, low-cost, and easy-to-use outdoor devices are needed to augment existing efforts in mosquito control that combat the spread of disease, such as Zika. Thus, we have developed a modular, portable, non-powered (passive), self-contained, and field-deployable device suitable for releasing volatiles with a wide range of applications such as attracting, repelling, and killing mosquitoes. This unique device relies on a novel nested wick and two-reservoir design that achieves a constant release of volatiles over several hundred hours. Devices loaded with one of either two compounds, geraniol or 1-methylpiperazine (MP), were tested in a controlled environment (32 °C and 70% relative humidity), and both compounds achieved a constant release from our devices at a rate of 2.4 mg/h and 47 mg/h, respectively. The liquid payload can be volatile attractants or repellants as well as mosquitocide-containing feeding solutions for capture and surveillance. This low-cost device can be utilized for both civilian and military mosquito control purposes, but it will be particularly important for protecting those in economically repressed environments, such as sub-Saharan Africa and Central and South America.


Assuntos
Monoterpenos Acíclicos , Repelentes de Insetos , Controle de Mosquitos/instrumentação , Mosquitos Vetores , Piperazinas , Infecção por Zika virus/prevenção & controle , Animais , Culicidae/virologia , Humanos , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...