Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 131(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361522

RESUMO

Dysregulated secretion and extracellular activation of TGF-ß1 stimulates myofibroblasts to accumulate disordered and stiff extracellular matrix (ECM) leading to fibrosis. Fibronectin immobilizes latent TGF-ß-binding protein-1 (LTBP-1) and thus stores TGF-ß1 in the ECM. Because the ED-A fibronectin splice variant is prominently expressed during fibrosis and supports myofibroblast activation, we investigated whether ED-A promotes LTBP-1-fibronectin interactions. Using stiffness-tuneable substrates for human dermal fibroblast cultures, we showed that high ECM stiffness promotes expression and colocalization of LTBP-1 and ED-A-containing fibronectin. When rescuing fibronectin-depleted fibroblasts with specific fibronectin splice variants, LTBP-1 bound more efficiently to ED-A-containing fibronectin than to ED-B-containing fibronectin and fibronectin lacking splice domains. Function blocking of the ED-A domain using antibodies and competitive peptides resulted in reduced LTBP-1 binding to ED-A-containing fibronectin, reduced LTBP-1 incorporation into the fibroblast ECM and reduced TGF-ß1 activation. Similar results were obtained by blocking the heparin-binding stretch FNIII12-13-14 (HepII), adjacent to the ED-A domain in fibronectin. Collectively, our results suggest that the ED-A domain enhances association of the latent TGF-ß1 by promoting weak direct binding to LTBP-1 and by enhancing heparin-mediated protein interactions through HepII in fibronectin.


Assuntos
Fibronectinas/genética , Fibrose/genética , Proteínas de Ligação a TGF-beta Latente/genética , Fator de Crescimento Transformador beta1/genética , Animais , Proteínas de Transporte , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibronectinas/química , Fibrose/patologia , Células HEK293 , Humanos , Proteínas de Ligação a TGF-beta Latente/química , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Ligação Proteica/genética , Domínios Proteicos/genética , Isoformas de Proteínas/genética , Ratos
2.
Theranostics ; 7(13): 3192-3206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900504

RESUMO

One of the major hurdles in intravenous regenerative cell therapy is the low homing efficiency to the area where these cells are needed. To increase cell homing toward areas of myocardial damage, we developed a bispecific tandem single-chain antibody (Tand-scFvSca-1+GPIIb/IIIa) that binds with high affinity to activated platelets via the activated glycoprotein (GP)IIb/IIIa receptor, and to a subset of peripheral blood mononuclear cells (PBMC) which express the stem cell antigen-1 (Sca-1) receptor. Methods: The Tand-scFvSca-1+GPIIb/IIIa was engineered, characterized and tested in a mouse model of ischemia-reperfusion (IR) injury applying left coronary artery occlusion for 60 min. Fluorescence cell tracking, cell infiltration studies, echocardiographic and histological analyses were performed. Results: Treatment of mice undergoing myocardial infarction with targeted-PBMCs led to successful cell delivery to the ischemic-reperfused myocardium, followed by a significant decrease in infiltration of inflammatory cells. Homing of targeted-PBMCs as shown by fluorescence cell tracking ultimately decreased fibrosis, increased capillary density, and restored cardiac function 4 weeks after ischemia-reperfusion injury. Conclusion: Tand-scFvSca-1+GPIIb/IIIa is a promising candidate to enhance therapeutic cell delivery in order to promote myocardial regeneration and thereby preventing heart failure.


Assuntos
Plaquetas/metabolismo , Testes de Função Cardíaca , Leucócitos Mononucleares/transplante , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Células CHO , Adesão Celular , Cricetinae , Cricetulus , Citocinas/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/patologia , Leucócitos/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Neovascularização Fisiológica , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Anticorpos de Cadeia Única/metabolismo , Remodelação Ventricular
3.
Virology ; 482: 260-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956737

RESUMO

Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer.


Assuntos
Bacteriófagos/fisiologia , Empacotamento do DNA , Endodesoxirribonucleases/metabolismo , Montagem de Vírus , Bacteriófagos/genética , Sítios de Ligação , DNA Viral/metabolismo
4.
J Cell Biol ; 207(2): 283-97, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25332161

RESUMO

Integrin-mediated force application induces a conformational change in latent TGF-ß1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-ß1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-ß1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-ß1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-ß1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-ß1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.


Assuntos
Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Células HEK293 , Humanos , Integrinas/metabolismo , Integrinas/fisiologia , Mecanotransdução Celular , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Ratos Wistar
5.
J Pathol ; 229(2): 298-309, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22996908

RESUMO

Myofibroblasts, and the extracellular matrix (ECM) in which they reside, are critical components of wound healing and fibrosis. The ECM, traditionally viewed as the structural elements within which cells reside, is actually a functional tissue whose components possess not only scaffolding characteristics, but also growth factor, mitogenic, and other bioactive properties. Although it has been suggested that tissue fibrosis simply reflects an 'exuberant' wound-healing response, examination of the ECM and the roles of myofibroblasts during fibrogenesis instead suggest that the organism may be attempting to recapitulate developmental programmes designed to regenerate functional tissue. Evidence of this is provided by the temporospatial re-emergence of embryonic ECM proteins by fibroblasts and myofibroblasts that induce cellular programmatic responses intended to produce a functional tissue. In the setting of wound healing (or physiological fibrosis), this occurs in a highly regulated and exquisitely choreographed fashion which results in cessation of haemorrhage, restoration of barrier integrity, and re-establishment of tissue function. However, pathological tissue fibrosis, which oftentimes causes organ dysfunction and significant morbidity or mortality, likely results from dysregulation of normal wound-healing processes or abnormalities of the process itself. This review will focus on the myofibroblast ECM and its role in both physiological and pathological fibrosis, and will discuss the potential for therapeutically targeting ECM proteins for treatment of fibrotic disorders.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Cicatrização , Animais , Matriz Extracelular/patologia , Fibrose , Homeostase , Humanos , Miofibroblastos/patologia , Transdução de Sinais
6.
Curr Biol ; 21(24): 2046-54, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22169532

RESUMO

BACKGROUND: TGF-ß1 controls many pathophysiological processes including tissue homeostasis, fibrosis, and cancer progression. Together with its latency-associated peptide (LAP), TGF-ß1 binds to the latent TGF-ß1-binding protein-1 (LTBP-1), which is part of the extracellular matrix (ECM). Transmission of cell force via integrins is one major mechanism to activate latent TGF-ß1 from ECM stores. Latent TGF-ß1 mechanical activation is more efficient with higher cell forces and ECM stiffening. However, little is known about the molecular events involved in this mechanical activation mechanism. RESULTS: By using single-molecule force spectroscopy and magnetic microbeads, we analyzed how forces exerted on the LAP lead to conformational changes in the latent complex that can ultimately result in TGF-ß1 release. We demonstrate the unfolding of two LAP key domains for mechanical TGF-ß1 activation: the α1 helix and the latency lasso, which together have been referred to as the "straitjacket" that keeps TGF-ß1 associated with LAP. The simultaneous unfolding of both domains, leading to full opening of the straitjacket at a force of ~40 pN, was achieved only when TGF-ß1 was bound to the LTBP-1 in the ECM. CONCLUSIONS: Our results directly demonstrate opening of the TGF-ß1 straitjacket by application of mechanical force in the order of magnitude of what can be transmitted by single integrins. For this mechanism to be in place, binding of latent TGF-ß1 to LTBP-1 is mandatory. Interfering with mechanical activation of latent TGF-ß1 by reducing integrin affinity, cell contractility, and binding of latent TGF-ß1 to the ECM provides new possibilities to therapeutically modulate TGF-ß1 actions.


Assuntos
Integrinas/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Matriz Extracelular/metabolismo , Humanos , Imãs , Microesferas , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...