Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 125(3): 785-795, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502931

RESUMO

The accurate processing of temporal information is of critical importance in everyday life. Yet, psychophysical studies in humans have shown that the perception of time is distorted around saccadic eye movements. The neural correlates of this misperception are still poorly understood. Behavioral and neural evidence suggest that it is tightly linked to other known perisaccadic modulations of visual perception. To further our understanding of how temporal processing is affected by saccades, we studied the representations of brief visual time intervals during fixation and saccades in area V4 of two awake macaques. We presented random sequences of vertical bar stimuli and extracted neural responses to double-pulse stimulation at varying interstimulus intervals. Our results show that temporal information about very brief intervals of as brief as 20 ms is reliably represented in the multiunit activity in area V4. Response latencies were not systematically modulated by the saccade. However, a general increase in perisaccadic activity altered the ratio of response amplitudes within stimulus pairs compared with fixation. In line with previous studies showing that the perception of brief time intervals is partly based on response levels, this may be seen as a possible correlate of the perisaccadic misperception of time.NEW & NOTEWORTHY We investigated for the first time how temporal information on very brief timescales is represented in area V4 around the time of saccadic eye movements. Overall, the responses showed an unexpectedly precise representation of time intervals. Our finding of a perisaccadic modulation of relative response amplitudes introduces a new possible correlate of saccade-related perceptual distortions of time.


Assuntos
Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Percepção do Tempo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Macaca , Macaca mulatta , Masculino
2.
J Vis ; 20(4): 8, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32298416

RESUMO

Keeping track of objects in our environment across body and eye movements is essential for perceptual stability and localization of external objects. As of yet, it is largely unknown how this perceptual stability is achieved. A common behavioral approach to investigate potential neuronal mechanisms underlying spatial vision has been the presentation of one brief visual stimulus across eye movements. Here, we adopted this approach and aimed to determine the reference frame of the perceptual localization of two successively presented flashes during fixation and smooth pursuit eye movements (SPEMs). To this end, eccentric flashes with a stimulus onset asynchrony of zero or ± 200 ms had to be localized with respect to each other during fixation and SPEMs. The results were used to evaluate different models predicting the reference frame in which the spatial information is represented. First, we were able to reproduce the well-known effect of relative mislocalization during fixation. Second, smooth pursuit led to a characteristic relative mislocalization, different from that during fixation. A model assuming that relative localization takes place in a nonretinocentric reference frame described our data best. This suggests that the relative localization judgment is performed at a stage of visual processing in which retinal and nonretinal information is available.


Assuntos
Fixação Ocular/fisiologia , Estimulação Luminosa , Acompanhamento Ocular Uniforme/fisiologia , Retina/efeitos da radiação , Adulto , Feminino , Humanos , Julgamento , Masculino , Percepção de Movimento/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
3.
Sci Rep ; 8(1): 12399, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120337

RESUMO

Interaction with the environment requires fast and reliable sensory processing. The visual system is confronted with a continuous flow of high-dimensional input (e.g. orientation, color, motion). From a theoretical point of view, it would be advantageous if critical information was processed independent of attentional load, i.e. preattentively. Here, we hypothesized that visual motion is such a critical signal and aimed for a neural signature of its preattentive encoding. Furthermore, we were interested in the neural correlates of predictability of linear motion trajectories based on the presence or absence of preceding motion. We presented a visual oddball paradigm and studied event-related potentials (ERPs). Stimuli were linearly moving Gabor patches that disappeared behind an occluder. The difference between deviant and standard trials was a trajectory change which happened behind the occluder in deviant trials only, inducing a prediction error. As hypothesized, we found a visual mismatch negativity-component over parietal and occipital electrodes. In a further condition, trials without preceding motion were presented in which the patch just appeared from behind the occluder and, hence, was not predictable. We found larger ERP-components for unpredictable stimuli. In summary, our results provide evidence for a preattentive and predictive processing of linear trajectories of visual motion.


Assuntos
Atenção/fisiologia , Potenciais Evocados/fisiologia , Percepção de Movimento/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino
4.
J Vis ; 17(9): 16, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28837962

RESUMO

Primates use frequent, rapid eye movements to sample their visual environment. This is a fruitful strategy to make the best use of the highly sensitive foveal part of the retina, but it requires neural mechanisms to bind the rapidly changing visual input into a single, stable percept. Studies investigating these neural mechanisms have typically assumed that perisaccadic perception in nonhuman primates matches that of humans. We tested this assumption by performing identical experiments in human and nonhuman primates. Our data confirm that perisaccadic visual perception of macaques and humans is qualitatively similar. Specifically, we found a reduction in detectability and mislocalization of targets presented at the time of saccades. We also found substantial differences between human and nonhuman primates. Notably, in nonhuman primates, localization that requires knowledge of eye position was less precise, nonhuman primates detected fewer perisaccadic stimuli, and perisaccadic compression was not towards the saccade target. The qualitative similarities between species support the view that the nonhuman primate is ideally suited to study aspects of brain function-such as those relying on foveal vision-that are uniquely developed in primates. The quantitative differences, however, demonstrate the need for a reassessment of the models purportedly linking neural response changes at the time of saccades with the behavioral phenomena of perisaccadic reduction of detectability and mislocalization.


Assuntos
Retina/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Humanos , Macaca , Masculino , Estimulação Luminosa
5.
J Neurophysiol ; 118(3): 1650-1663, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659463

RESUMO

In the natural world, self-motion always stimulates several different sensory modalities. Here we investigated the interplay between a visual optic flow stimulus simulating self-motion and a tactile stimulus (air flow resulting from self-motion) while human observers were engaged in a distance reproduction task. We found that adding congruent tactile information (i.e., speed of the air flow and speed of visual motion are directly proportional) to the visual information significantly improves the precision of the actively reproduced distances. This improvement, however, was smaller than predicted for an optimal integration of visual and tactile information. In contrast, incongruent tactile information (i.e., speed of the air flow and speed of visual motion are inversely proportional) did not improve subjects' precision indicating that incongruent tactile information and visual information were not integrated. One possible interpretation of the results is a link to properties of neurons in the ventral intraparietal area that have been shown to have spatially and action-congruent receptive fields for visual and tactile stimuli.NEW & NOTEWORTHY This study shows that tactile and visual information can be integrated to improve the estimates of the parameters of self-motion. This, however, happens only if the two sources of information are congruent-as they are in a natural environment. In contrast, an incongruent tactile stimulus is still used as a source of information about self-motion but it is not integrated with visual information.


Assuntos
Percepção de Movimento , Percepção do Tato , Adulto , Feminino , Humanos , Masculino , Movimento , Lobo Parietal/fisiologia
6.
Front Hum Neurosci ; 11: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261078

RESUMO

Humans can perceive and estimate approximate numerical information, even when accurate counting is impossible e.g., due to short presentation time. If the number of objects to be estimated is small, typically around 1-4 items, observers are able to give very fast and precise judgments with high confidence-an effect that is called subitizing. Due to its speed and effortless nature subitizing has usually been assumed to be preattentive, putting it into the same category as other low level visual features like color or orientation. More recently, however, a number of studies have suggested that subitizing might be dependent on attentional resources. In our current study we investigated the potentially preattentive nature of visual numerical perception in the subitizing range by means of EEG. We presented peripheral, task irrelevant sequences of stimuli consisting of a certain number of circular patches while participants were engaged in a demanding, non-numerical detection task at the fixation point drawing attention away from the number stimuli. Within a sequence of stimuli of a given number of patches (called "standards") we interspersed some stimuli of different numerosity ("oddballs"). We compared the evoked responses to visually identical stimuli that had been presented in two different conditions, serving as standard in one condition and as oddball in the other. We found significant visual mismatch negativity (vMMN) responses over parieto-occipital electrodes. In addition to the event-related potential (ERP) analysis, we performed a time-frequency analysis (TFA) to investigate whether the vMMN was accompanied by additional oscillatory processes. We found a concurrent increase in evoked theta power of similar strength over both hemispheres. Our results provide clear evidence for a preattentive processing of numerical visual information in the subitizing range.

7.
Front Integr Neurosci ; 10: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630547

RESUMO

Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface.

8.
J Vis ; 10(8): 19, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20884594

RESUMO

The spatially uniform mislocalization of stimuli flashed around the onset of fast eye-movements (perisaccadic shift) has previously been explained by an inaccurate internal representation of current eye position. However, this hypothesis does not account for the observation that continuously presented stimuli are correctly localized during saccades. Here we show that the two findings are not mutually exclusive. The novelty of our approach lies in our interpretation of the extraretinal signal which, in contrast to other models, is not considered an (erroneous) estimate of current eye-position. Based on the reafference principle, our model assumes that the extraretinal signal is optimal in that it accurately predicts the neural representation of the retinal position of a continuously present stimulus. Perisaccadic shift arises as a consequence of maintaining stable perisaccadic position estimates for continuously present stimuli under the physiologically plausible assumption of temporal low-pass filtering in the afferent visual pathway. Consequently, our model reconciles the reafference principle with the finding of perisaccadic shift.


Assuntos
Fixação Ocular/fisiologia , Retina/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Espacial/fisiologia , Humanos , Estimulação Luminosa
9.
Exp Brain Res ; 198(2-3): 411-23, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19506844

RESUMO

Interaction with the outside world requires the knowledge about where objects are with respect to one's own body. Such spatial information is represented in various topographic maps in different sensory systems. From a computational point of view, however, a single, modality-invariant map of the incoming sensory signals appears to be a more efficient strategy for spatial representations. If such a single supra-modal map existed and were used for perceptual purposes, localization characteristics should be similar across modalities. Previous studies had shown mislocalization of brief visual stimuli presented in the temporal vicinity of saccadic eye-movements. Here, we tested, if such mislocalizations could also be found for auditory stimuli. We presented brief noise bursts before, during, and after visually guided saccades. Indeed, we found localization errors for these auditory stimuli. The spatio-temporal pattern of this mislocalization, however, clearly differed from the one found for visual stimuli. The spatial error also depended on the exact type of eye-movement (visually guided vs. memory guided saccades). Finally, results obtained in fixational control paradigms under different conditions suggest that auditory localization can be strongly influenced by both static and dynamic visual stimuli. Visual localization on the other hand is not influenced by distracting visual stimuli but can be inaccurate in the temporal vicinity of eye-movements. Taken together, our results argue against a single, modality-independent spatial representation of sensory signals.


Assuntos
Movimentos Sacádicos , Localização de Som , Estimulação Acústica , Adulto , Análise de Variância , Sinais (Psicologia) , Medições dos Movimentos Oculares , Feminino , Fixação Ocular , Humanos , Modelos Lineares , Masculino , Memória , Estimulação Luminosa , Psicoacústica , Percepção Espacial , Fatores de Tempo , Adulto Jovem
10.
J Vis ; 8(14): 27.1-13, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19146328

RESUMO

A number of studies have investigated the localization of briefly flashed targets during saccades to understand how the brain perceptually compensates for changes in gaze direction. Typical version saccades, i.e., saccades between two points of the horopter, are not only associated with changes in gaze direction, but also with large transient changes of ocular vergence. These transient changes in vergence have to be compensated for just as changes in gaze direction. We investigated depth judgments of perisaccadically flashed stimuli relative to continuously present references and report several novel findings. First, disparity thresholds increased around saccade onset. Second, for horizontal saccades, depth judgments were prone to systematic errors: Stimuli flashed around saccade onset were perceived in a closer depth plane than persistently shown references with the same retinal disparity. Briefly before and after this period, flashed stimuli tended to be perceived in a farther depth plane. Third, depth judgments for upward and downward saccades differed substantially: For upward, but not for downward saccades we observed the same pattern of mislocalization as for horizontal saccades. Finally, unlike localization in the fronto-parallel plane, depth judgments did not critically depend on the presence of visual references. Current models fail to account for the observed pattern of mislocalization in depth.


Assuntos
Percepção de Profundidade/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Humanos , Julgamento , Estimulação Luminosa/métodos , Psicofísica , Disparidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...