Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 10(41): 9513-9529, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055323

RESUMO

High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.

2.
Angew Chem Int Ed Engl ; 48(7): 1291-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19130517

RESUMO

It's in the bond: The cleavage of C-H bonds by two related oxoiron(IV) complexes shows a range of kinetic isotope effect (KIE) values that exhibit an unusual dependence on the C-H bond strength. Large nonclassical KIEs are observed for bond strengths below 93 kcal mol(-1), while semiclassical values are found above this value (see graph, DHA = 9,10-dihydroanthracene). This nonintuitive behavior can be rationalized by invoking a two-state reactivity model.


Assuntos
Ferro/metabolismo , Isótopos/metabolismo , Oxigênio/metabolismo , Catálise , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Ferro/química , Marcação por Isótopo , Isótopos/química , Cinética , Modelos Químicos , Estrutura Molecular , Oxirredução , Oxigênio/química
4.
J Am Chem Soc ; 129(51): 15983-96, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18052249

RESUMO

High-valent FeIV=O species are key intermediates in the catalytic cycles of many mononuclear non-heme iron enzymes and have been structurally defined in model systems. Variable-temperature magnetic circular dichroism (VT-MCD) spectroscopy has been used to evaluate the electronic structures and in particular the Fe-O bonds of three FeIV=O (S = 1) model complexes, [FeIV(O)(TMC)(NCMe)]2+, [FeIV(O)(TMC)(OC(O)CF3)]+, and [FeIV(O)(N4Py)]2+. These complexes are characterized by their strong and covalent Fe-O pi-bonds. The MCD spectra show a vibronic progression in the nonbonding --> pi* excited state, providing the Fe-O stretching frequency and the Fe-O bond length in this excited state and quantifying the pi-contribution to the total Fe-O bond. Correlation of these experimental data to reactivity shows that the [FeIV(O)(N4Py)]2+ complex, with the highest reactivity toward hydrogen-atom abstraction among the three, has the strongest Fe-O pi-bond. Density functional calculations were correlated to the data and support the experimental analysis. The strength and covalency of the Fe-O pi-bond result in high oxygen character in the important frontier molecular orbitals (FMOs) for this reaction, the unoccupied beta-spin d(xz/yz) orbitals, that activates these for electrophilic attack. An extension to biologically relevant FeIV=O (S = 2) enzyme intermediates shows that these can perform electrophilic attack reactions along the same mechanistic pathway (pi-FMO pathway) with similar reactivity but also have an additional reaction channel involving the unoccupied alpha-spin d(z2) orbital (sigma-FMO pathway). These studies experimentally probe the FMOs involved in the reactivity of FeIV=O (S = 1) model complexes resulting in a detailed understanding of the Fe-O bond and its contributions to reactivity.


Assuntos
Compostos Férricos/química , Teoria Quântica , Análise Espectral/métodos
7.
J Am Chem Soc ; 126(51): 16750-61, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15612713

RESUMO

Transient mononuclear low-spin alkylperoxoiron(III) and oxoiron(IV) complexes that are relevant to the activation of dioxygen by nonheme iron enzymes have been generated from synthetic iron(II) complexes of neutral tetradentate (TPA) and pentadentate (N4Py, Bn-TPEN) ligands and structurally characterized by means of Fe K-edge X-ray absorption spectroscopy (XAS). Notable features obtained from fits of the EXAFS region are Fe-O bond lengths of 1.78 A for the alkylperoxoiron(III) intermediates and 1.65-1.68 A for the oxoiron(IV) intermediates, reflecting different strengths in the Fe-O pi interactions. These differences are also observed in the intensities of the 1s-to-3d transitions in the XANES region, which increase from 4 units for the nearly octahedral iron(II) precursor to 9-15 units for the alkylperoxoiron(III) intermediates to 25-29 units for the oxoiron(IV) species.


Assuntos
Compostos de Ferro/química , Ferroproteínas não Heme/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Análise de Fourier , Modelos Moleculares , Ferroproteínas não Heme/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Peróxidos/química , Espectrometria por Raios X , Espectrofotometria Ultravioleta
8.
J Am Chem Soc ; 126(2): 472-3, 2004 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-14719937

RESUMO

Nonheme oxoiron(IV) complexes of two pentadentate ligands, N4Py (N,N-bis(2-pyridylmethyl)-bis(2-pyridyl)methylamine) and Bn-tpen (N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane), have been generated and found to have spectroscopic properties similar to the closely related tetradentate TPA (tris(2-pyridylmethyl)amine) complex reported earlier. However, unlike the TPA complex, the pentadentate complexes have a considerable lifetime at room temperature. This greater thermal stability has allowed the hydroxylation of alkanes with C-H bonds as strong as 99.3 kcal/mol to be observed at room temperature. Furthermore, a large deuterium KIE value is found in the oxidation of ethylbenzene. These observations lend strong credence to postulated mechanisms of mononuclear nonheme iron enzymes that invoke the intermediacy of oxoiron(IV) species.


Assuntos
Cicloexanos/química , Compostos de Ferro/química , Ferro/química , Oxigênio/química , Materiais Biomiméticos/química , Etilenodiaminas/química , Compostos de Ferro/síntese química , Oxirredução , Piridinas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...