Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Soc Nephrol ; 35(4): 483-494, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231590

RESUMO

SIGNIFICANCE STATEMENT: Early identification of patients at risk of renal flares in ANCA vasculitis is crucial. However, current clinical parameters have limitations in predicting renal relapse accurately. This study investigated the use of urinary CD4 + T lymphocytes as a predictive biomarker for renal flares in ANCA vasculitis. This study, including urine samples from 102 patients, found that the presence of urinary CD4 + T cells was a robust predictor of renal relapse within a 6-month time frame, with a sensitivity of 60% and a specificity of 97.8%. The diagnostic accuracy of urinary CD4 + T cells exceeded that of ANCA titers, proteinuria, and hematuria. Monitoring urinary CD4 + T lymphocytes could help assess the risk of future renal relapse, enabling early preventive measures and tailored treatment strategies. BACKGROUND: In ANCA-associated vasculitis, there is a lack of biomarkers for predicting renal relapse. Urinary T cells have been shown to differentiate active GN from remission in ANCA-associated vasculitis, but their predictive value for renal flares remains unknown. METHODS: The PRE-FLARED study was a prospective multicenter biomarker study including 102 individuals with ANCA-associated vasculitis in remission aimed to predict renal relapse by quantifying urinary CD4 + T-cell subsets using flow cytometry at baseline and monitoring clinical outcomes over a 6-month follow-up. RESULTS: Among the participants, ten experienced renal relapses, two had non-renal flares, and 90 remained in stable remission. The median baseline urinary CD4 + T-cell count was significantly higher in patients who relapsed compared with those in remission. Receiver operating characteristic curve analysis of urinary CD4 + T-cell counts showed an area under the curve value of 0.88 for predicting renal flares, outperforming ANCA titers, hematuria, and proteinuria. Using a cutoff of 490 CD4 + T cells per 100 ml urine, the sensitivity and specificity in identifying patients with future renal flares were 60% and 97.8%, respectively. In a post hoc analysis, combining urinary CD4 + T-cell counts with proteinase-3 ANCA levels suggested improved predictive performance in the PR3 + subgroup. In addition, the number of urinary CD4 + T cells showed a limited correlation with a decline in GFR and an increase in proteinuria over the follow-up period. CONCLUSIONS: This study concluded that urinary CD4 + T-cell counts could identify patients with ANCA-associated vasculitis at a substantial risk of renal relapse within 6 months. Combining these counts with ANCA levels further improved the prediction of relapse. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Urinary T Lymphocytes Predict Renal Flares in Patients With Inactive ANCA-associated Glomerulonephritis (PRE-FLARED), NCT04428398 .


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Biomarcadores/urina , Hematúria , Estudos Prospectivos , Proteinúria , Recidiva
2.
Kidney Int Rep ; 8(4): 871-883, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37069968

RESUMO

Introduction: Necrotizing crescentic glomerulonephritis is a major contributor to morbidity and mortality in Antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Because therapy relies on immunosuppressive agents with potentially severe adverse effects, a reliable noninvasive biomarker of disease activity is needed to guide treatment. Methods: We used flow cytometry to quantify T cell subsets in blood and urine samples from 95 patients with AAV and 8 controls to evaluate their biomarker characteristics. These were compared to soluble markers, monocyte chemoattractant protein-1 (MCP-1), soluble CD163 (sCD163), soluble CD25 (sCD25), and complement C5a (C5a), measured using multiplex analysis. Available kidney biopsies (n = 21) were classified according to Berden. Results: Patients with active renal AAV (rAAV) showed significantly higher urinary cell counts than those in remission, or those with extrarenal manifestation, or healthy controls. Urinary T cells showed robust discrimination of disease activity with superior performance compared to MCP-1 and sCD163. Patients whose kidney biopsies had been classified as "crescentic" according to Berden classification showed higher urinary T cell counts. Discordant regulatory T cells (Treg) proportions and CD4+/CD8+ ratio in blood and urine suggested that urinary cells reflect tissue migration rather than mere micro-bleeding. Furthermore, urinary Treg and T helper cells (TH17) patterns were associated with clinical response and risk of renal relapse. Conclusion: Urinary T cells reflect the renal inflammatory milieu in AAV and provide further insights into the pathogenesis of this chronic condition. Their promising potential as noninvasive diagnostic and prognostic biomarkers deserves further exploitation.

3.
J Am Soc Nephrol ; 34(3): 394-411, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857499

RESUMO

SIGNIFICANCE STATEMENT: Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND: Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS: We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS: HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION: Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Rim , Regeneração , Células Epiteliais , Estresse Oxidativo , Ácido Glicirrízico
4.
Cytometry B Clin Cytom ; 104(6): 417-425, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36880455

RESUMO

INTRODUCTION: Kidney diseases are a major health concern worldwide. Currently there is a large unmet need for novel biomarkers to non-invasively diagnose and monitor kidney diseases. Urinary cells are promising biomarkers and their analysis by flow cytometry has demonstrated its utility in diverse clinical settings. However, up to date this methodology depends on fresh samples, as cellular event counts and the signal-to-noise-ratio deter over time. Here we developed an easy-to-use two-step preservation method for conservation of urine samples for subsequent flow cytometry. METHODS: The protocol utilizes a combination of the formaldehyde releasing agent imidazolidinyl urea (IU) and MOPS buffer, leading to gentle fixation of urinary cells. RESULTS: The preservation method increases acceptable storing time of urine samples from several hours to up to 6 days. Cellular event counts and staining properties of cells remain comparable to fresh untreated samples. OUTLOOK: The hereby presented preservation method facilitates future investigations on flow cytometry of urinary cells as potential biomarkers and may enable broad implementation in clinical practice.


Assuntos
Formaldeído , Nefropatias , Humanos , Citometria de Fluxo/métodos , Biomarcadores
5.
Kidney Int ; 102(6): 1359-1370, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049643

RESUMO

Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.


Assuntos
Injúria Renal Aguda , Humanos , Camundongos , Animais , Injúria Renal Aguda/patologia , Rim/patologia , Biomarcadores/urina , Estresse Oxidativo , Células Epiteliais/patologia
6.
Genome Med ; 14(1): 103, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085050

RESUMO

BACKGROUND: Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. METHODS: We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1-2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. RESULTS: High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. CONCLUSIONS: The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/genética , COVID-19/genética , Estado Terminal , Humanos , Rim , Transcriptoma
7.
Front Med (Lausanne) ; 9: 928516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911418

RESUMO

Early detection of kidney transplant (KT) rejection remains a challenge in patient care. Non-invasive biomarkers hold high potential to detect rejection, adjust immunosuppression, and monitor KT patients. So far, no approach has fully satisfied requirements to innovate routine monitoring of KT patients. In this two-center study we analyzed a total of 380 urine samples. T cells and tubular epithelial cells were quantified in KT patients with graft deterioration using flow cytometry. Epigenetic urine cell quantification was used to confirm flow cytometric results. Moreover, a cohort of KT patients was followed up during the first year after transplantation, tracking cell subsets over time. Abundance of urinary cell counts differed in patients with and without rejection. Most strikingly, various T cell subsets were enriched in patients with T cell-mediated rejection (TCMR) compared to patients without TCMR. Among T cell subsets, CD8+HLA-DR+ T cells were most distinctive (AUC = 0.91, Spec.: 95.9%, Sens.: 76.5%). Epigenetic analysis confirmed T cell and tubular epithelial cell quantities as determined by flow cytometry. Urinary T cell abundance in new KT patients decreased during their first year after transplantation. In conclusion urinary T cells reflect intrarenal inflammation in TCMR. T cell subsets yield high potential to monitor KT patients and detect rejection. Hereby we present a promising biomarker to non-invasively diagnose TCMR.

8.
Eur J Appl Physiol ; 121(6): 1773-1781, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33704546

RESUMO

PURPOSE: It remains unknown how different training intensities and volumes chronically impact circulating lymphocytes and cellular adhesion molecules. First, we aimed to monitor changes in NK and T cells over a training season and relate these to training load. Second, we analyzed effects of training differences between swimmers on these cells. Finally, we examined if changes in lymphocytes were associated with sICAM-1 concentrations. METHODS: We analyzed weekly training volume, training intensity, proportions of T and NK cells and serum sICAM-1 in eight sprint (SS) and seven middle-distance swimmers (MID) at three points over a 16-week training period: at the start (t0), after 7 weeks of increased training load (t7) and after 16 weeks, including 5-day taper (t16). RESULTS: Training volume of all swimmers was statistically higher and training intensity lower from t0-t7 compared to t7-t16 (p = 0.001). Secondly, training intensity was statistically higher in SS from t0-t7 (p = 0.004) and t7-t16 (p = 0.015), while MID had a statistically higher training volume from t7-t16 (p = 0.04). From t0-t7, NK (p = 0.06) and CD45RA+CD45RO+CD4+ cells (p < 0.001) statistically decreased, while CD45RA-CD45RO+CD4+ cells (p = 0.024) statistically increased. In a subgroup analysis, SS showed statistically larger increases in NK cells from t7-t16 than MID (p = 0.012). Lastly, sICAM-1 concentrations were associated with changes in CD45RA-CDRO+CD4+ cells (r = - 0.656, p = 0.08). CONCLUSION: These results indicate that intensified training in swimmers resulted in transient changes in T and NK cells. Further, NK cells are sensitive to high training volumes. Lastly, sICAM-1 concentrations may be associated with the migration and maturation of CD4+ cells in athletes.


Assuntos
Molécula 1 de Adesão Intercelular/sangue , Células Matadoras Naturais/metabolismo , Educação Física e Treinamento/métodos , Natação/fisiologia , Linfócitos T/metabolismo , Adolescente , Feminino , Humanos , Masculino
9.
J Am Soc Nephrol ; 31(7): 1569-1584, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32487561

RESUMO

BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) is a diagnostic marker of intrinsic kidney injury produced by damaged renal cells and by neutrophils. ANCA-associated vasculitis features necrotizing crescentic GN (NCGN), and ANCA-activated neutrophils contribute to NCGN. Whether NGAL plays a mechanistic role in ANCA-associated vasculitis is unknown. METHODS: We measured NGAL in patients with ANCA-associated vasculitis and mice with anti-myeloperoxidase (anti-MPO) antibody-induced NCGN. We compared kidney histology, neutrophil functions, T cell proliferation and polarization, renal infiltrating cells, and cytokines in wild-type and NGAL-deficient chimeric mice with anti-MPO antibody-induced NCGN. To assess the role of TH17 immunity, we transplanted irradiated MPO-immunized MPO-deficient mice with bone marrow from either wild-type or NGAL-deficient mice; we also transplanted irradiated MPO-immunized MPO/IL-17A double-deficient mice with bone marrow from either IL-17A-deficient or NGAL/IL-17A double-deficient mice. RESULTS: Mice and patients with active ANCA-associated vasculitis demonstrated strongly increased serum and urinary NGAL levels. ANCA-stimulated neutrophils released NGAL. Mice with NGAL-deficient bone marrow developed worsened MPO-ANCA-induced NCGN. Intrinsic neutrophil functions were similar in NGAL-deficient and wild-type neutrophils, whereas T cell immunity was increased in chimeric mice with NGAL-deficient neutrophils with more renal infiltrating TH17 cells. NGAL-expressing neutrophils and CD3+ T cells were in close proximity in kidney and spleen. CD4+ T cells showed no intrinsic difference in proliferation and polarization in vitro, whereas iron siderophore-loaded NGAL suppressed TH17 polarization. We found significantly attenuated NCGN in IL-17A-deficient chimeras compared with MPO-deficient mice receiving wild-type bone marrow, as well as in NGAL/IL-17A-deficient chimeras compared with NGAL-deficient chimeras. CONCLUSIONS: Our findings support that bone marrow-derived, presumably neutrophil, NGAL protects from ANCA-induced NCGN by downregulating TH17 immunity.


Assuntos
Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Células Th17/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Anticorpos Anticitoplasma de Neutrófilos , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Proliferação de Células , Quimera , Modelos Animais de Doenças , Feminino , Glomerulonefrite/patologia , Humanos , Imunidade Celular , Interleucina-17/genética , Rim/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Peroxidase/imunologia , Sideróforos/metabolismo , Baço/patologia
10.
Int J Sports Physiol Perform ; 15(9): 1272-1280, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126524

RESUMO

PURPOSE: To assess the effects of periodized versus nonperiodized dry-land strength training (DLST) on indices of swimming performance in well-trained adolescent swimmers. METHODS: Sixteen athletes (10 boys and 6 girls; age 14.9 [1.1] y) performed similar endurance training for 16 weeks (29.1 [7.5] km·wk-1). During weeks 1 to 7, all athletes additionally performed 2 or 3 times weekly whole-body DLST (3 × 6-10 repetitions at 75-85% 1-repetition maximum [1RM]). Thereafter, the DLST frequency was maintained, but athletes were stratified into periodized (experimental, n = 9) and nonperiodized (control, n = 7) DLST groups. The experimental group performed maximal (3 × 3-4 repetitions at 85-90% 1RM) and explosive DLST (throws and unloaded jumps), while in the control group, DLST was maintained. RESULTS: Swimming time at 4 mmol·L-1 of blood lactate improved after 7 weeks in both the experimental (+2.6% [1.8%], P = .033) and the control groups (+3.2% [2.4%], P = .081) and plateaued thereafter. Ten-meter start improved in both the experimental (-3.6% [2.5%], P = .039) and the control groups (-5.1% [2.2%], P = .054) throughout the entire intervention. Both groups improved in maximal weight lifted in half-squat (experimental, +19.6% [14.9%], P = .021; control, +25.7% [18.4%], P = .054) and bench press (experimental, +14.1% [4.8%], P = .018; control, +19.3% [11.1%], P = .051). Countermovement-jump height increased only in the experimental group throughout the intervention (+19.4% [7.0%], P = .024). The associations for the pooled changes in half-squat performance and 4 mmol·L-1 of blood lactate were statistically significant (r = .560, P = .024). CONCLUSIONS: The findings do not support the superior effects of DLST periodization in adolescent swimmers. However, the association between improvements in lower-body strength and swimming performance still indicates the importance of muscle strength in this age group.

11.
Sci Rep ; 9(1): 8993, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222024

RESUMO

Epoxy-fatty-acids (EpFAs), cytochrome P450 dependent arachidonic acid derivatives, have been suggested to have anti-inflammatory properties, though their effects on autoimmune diseases like systemic lupus erythematosus (SLE) have yet to be investigated. We assessed the influence of EpFAs and their metabolites in lupus prone NZB/W F1 mice by pharmacological inhibition of soluble epoxide hydrolase (sEH, EPHX2). The sEH inhibitor 1770 was administered to lupus prone NZB/W F1 mice in a prophylactic and a therapeutic setting. Prophylactic inhibition of sEH significantly improved survival and reduced proteinuria. By contrast, sEH inhibitor-treated nephritic mice had no survival benefit; however, histological changes were reduced when compared to controls. In humans, urinary EpFA levels were significantly different in 47 SLE patients when compared to 10 healthy controls. Gene expression of EPHX2 was significantly reduced in the kidneys of both NZB/W F1 mice and lupus nephritis (LN) patients. Correlation of EpFAs with SLE disease activity and reduced renal EPHX gene expression in LN suggest roles for these components in human disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Pré-Medicação , Adulto , Idoso , Animais , Biomarcadores , Biópsia , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Imuno-Histoquímica , Lipídeos , Nefrite Lúpica/etiologia , Nefrite Lúpica/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos NZB , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
12.
Eur J Immunol ; 47(1): 180-192, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27753073

RESUMO

Renal infiltration of inflammatory cells contributes to the pathogenesis of lupus nephritis (LN). Current knowledge on the recruitment mechanisms relies mainly on findings in rodent models. Here, we assess various chemokine pathways in human LN by comparing urinary chemokine concentrations (in 25 patients with acute LN and in 78 lupus patients without active LN) with the expression of corresponding chemokine receptors on urinary leukocytes (in ten acute LN patients). Nine urinary chemokines were significantly elevated in LN patients and correlated with renal disease activity and urinary cell counts; however, their concentrations displayed considerable interindividual heterogeneity. Analysis of the corresponding receptors revealed abundance of urinary CD8+ T cells for CCR5 and CXCR3, while CD4+ T cells were additionally enriched for CCR1, CCR6 and CXCR6. Urinary Treg showed similar CCR expression, and urinary CD14+ macrophages were enriched for CCR5 expressing cells. In conclusion, cell specific recruitment patterns seem to involve CCR5 and CXCR3 in all cells studied, while CD4+ T-cell subset recruitment is probably much more varied. However, urinary chemokine abundance in active LN is individually variable in our cohort and does not offer a singular chemokine usable as universal biomarker or potential future treatment target.


Assuntos
Quimiocinas/urina , Nefrite Lúpica/imunologia , Nefrite Lúpica/urina , Adulto , Idoso , Biomarcadores , Biópsia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocinas/sangue , Quimiotaxia/imunologia , Análise por Conglomerados , Feminino , Citometria de Fluxo , Expressão Gênica , Humanos , Contagem de Leucócitos , Nefrite Lúpica/sangue , Nefrite Lúpica/diagnóstico , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Curva ROC , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Urinálise , Adulto Jovem
13.
Arthritis Res Ther ; 17: 94, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25890061

RESUMO

INTRODUCTION: Urinary T cells represent a reliable noninvasive biomarker for proliferative Lupus nephritis (LN). Little is known about the presence of T cell subsets, B cells and macrophages in the urine although they may further improve the validity of urinary cellular biomarkers for LN. METHODS: We analyzed contemporaneous blood and urine samples of patients with active LN (n = 19), other Systemic Lupus Erythematosus (SLE) patients (n = 79) and urine samples of patients with diabetic nephropathy (DN; n = 14) and anti-neutrophil cytoplasmatic antibody (ANCA) associated vasculitis (AAV; n = 11) by flow cytometry. RESULTS: Numbers of urinary T cells, B cells and macrophages correlated with disease activity and were significantly higher in the active LN group. Urinary T cells showed excellent distinction of patients with active LN, CD8+ T cells (AUC of ROC = 1.000) and CD4+ T cells (AUC = 0.9969) alike. CD19+ B cells (AUC = 0.7823) and CD14+ macrophages (AUC = 0.9066), as well as the clinical standard proteinuria (AUC = 0.9201), failed to reach these high standards. Patients with DN or AAV also showed increased urinary cell counts, although the CD4/CD8-ratio was significantly lower in SLE compared to in DN (p = 0.0006). Urinary CD4+ T cells of active LN patients proved to be mainly of effector memory phenotype and expressed significantly more CD40L and ki67 than corresponding blood cells. Urinary Treg counts correlated with disease activity. CONCLUSIONS: Despite of detectable urinary cell counts for B cells and macrophages, T cells remain the best urinary cellular biomarker for LN. A low CD4/CD8-ratio seems to be characteristic for LN.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/urina , Macrófagos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Estudos de Coortes , Feminino , Humanos , Nefrite Lúpica/diagnóstico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...