Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Ann Hum Genet ; 87(1-2): 50-62, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36448252

RESUMO

BACKGROUND/AIM: Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS: We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT: We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION: Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.


Assuntos
Microcefalia , Humanos , Camundongos , Animais , Microcefalia/genética , Proteoma/genética , Proteômica , Proteínas de Ciclo Celular/genética , Mutação , Proteínas do Tecido Nervoso/genética
3.
J Proteome Res ; 13(12): 5829-36, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25406860

RESUMO

In pressure overload (PO), sex differences in humans and rodents have been well documented and estrogen receptor (ER) ß is considered cardioprotective. However, the underlying mechanisms are poorly understood. Our aim was to investigate sex- and ERß-specific effects in protein abundance in PO employing a 2-dimensional gel electrophoresis/mass spectrometry-based proteomics approach. We hypothesized major sex differences and ERß-specific alterations consistent with cardioprotection in females. Two-month old male and female wild-type (WT) and ERß knockout (BERKO) mice were subjected to transverse aortic constriction (TAC) for 9 weeks (n = 4/group). In WT mice, hypertrophy was significantly more pronounced in males than females, while this sex difference was abolished in BERKO mice. We found 82 protein spots modulated between TAC and sham in WT males, 31 in WT females, 114 in BERKO males, and 87 in BERKO females (P ≤ 0.05). Our analysis revealed in WT and BERKO females an altered pattern of various proteins involved in structure and suggests a link between female sex and cytoskeletal integrity. In males, a set of proteins was identified that associate with mitochondrial bioenergetics and energy supply. We confirmed protein regulation by immunoblotting analysis. In conclusion, the proteomic response of the heart to PO is significantly modulated by ERß and sex. We put forward that the observed differences may identify sex-specific targets for the treatment of heart failure, contributing toward more personalized medical care.


Assuntos
Receptor beta de Estrogênio/metabolismo , Coração/fisiopatologia , Miocárdio/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Constrição Patológica/fisiopatologia , Eletroforese em Gel Bidimensional , Receptor beta de Estrogênio/genética , Feminino , Immunoblotting , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão , Fatores Sexuais
4.
Proteomics ; 14(20): 2249-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056804

RESUMO

Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle.


Assuntos
Músculo Esquelético/lesões , Músculo Esquelético/patologia , Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Actinas/análise , Sequência de Aminoácidos , Animais , Feminino , Imuno-Histoquímica , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley
5.
J Proteomics ; 107: 56-61, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-24732725

RESUMO

Human individuals differ from one another in almost all of their genes due to single nucleotide polymorphisms (SNPs). When the maternal and the paternal genomes become combined in a F1 individual, the two alleles of each gene represent arbitrary combinations. In consequence, individuals show high variability in protein expression. Furthermore, within a proteome, the proteins form networks of protein-protein interactions. These networks differ between individuals in robustness against genetic or/and environmental perturbation due to polymorphisms, which differ in type and composition between individuals, and modify the arrangement of proteins in the proteomic network. As a general conclusion, the robustness of a human individual against diseases may depend on the structure and expression of the protein-protein interaction network that varies in its functional efficiency between individuals due to "network-polymorphisms". This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.


Assuntos
Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Proteoma , Proteômica/métodos , Aniversários e Eventos Especiais , Feminino , Interação Gene-Ambiente , História do Século XX , História do Século XXI , Humanos , Masculino , Medicina de Precisão/história , Proteoma/genética , Proteoma/metabolismo , Proteômica/história
6.
Proteomics Clin Appl ; 7(11-12): 813-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24307263

RESUMO

PURPOSE: The majority of gastric cancers are diagnosed at advanced stages, characterized by robust therapy resistance. The oncoprotein hypoxia-inducible factor 1 (HIF-1) is associated with therapy resistance, partly via activation of the DNA damage response. We have noted a robust ability of gastric cancer cells to functionally compensate the loss of HIF-1 in vitro. The purpose of this study was to identify molecular pathways that underlie this compensation. EXPERIMENTAL DESIGN: We performed 2DE to compare the nuclear proteome of wild-type and HIF-1-deficient gastric cancer cells. Differently expressed protein spots were identified via MS). After bioinformatic evaluation, functional validation of selected identified pathways was performed. RESULTS: 2DE displayed a total of 2523 protein spots, from which 87 were identified as regulated by HIF-1. Seventy of the identified spots were different proteins and 17 were isoforms. Bioinformatic analyses revealed that a significant amount of the identified proteins were related to cellular survival pathways. Specifically, members of the proteasome pathway were found upregulated upon loss of HIF-1. Combined inhibition of HIF-1 and the proteasome inflicted significant DNA damage, supporting the hypothesis that the proteasome is of functional importance to compensate the loss of HIF-1. CONCLUSIONS AND CLINICAL RELEVANCE: Our data show robust and functional changes of the nuclear proteome upon inactivation of the HIF-1 oncoprotein in gastric cancer cells. We propose that 2DE-MS represents a useful tool to functionally dissect resistance mechanisms to targeted therapy and to identify novel targets for antiproliferative combination therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Espectrometria de Massas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
7.
PLoS One ; 8(8): e72164, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977241

RESUMO

Stimulation of neurons with brain-derived neurotrophic factor (BDNF) results in robust induction of SORLA, an intracellular sorting receptor of the VPS10P domain receptor gene family. However, the relevance of SORLA for BDNF-induced neuronal responses has not previously been investigated. We now demonstrate that SORLA is a sorting factor for the tropomyosin-related kinase receptor B (TrkB) that facilitates trafficking of this BDNF receptor between synaptic plasma membranes, post-synaptic densities, and cell soma, a step critical for neuronal signal transduction. Loss of SORLA expression results in impaired neuritic transport of TrkB and in blunted response to BDNF in primary neurons; and it aggravates neuromotoric deficits caused by low BDNF activity in a mouse model of Huntington's disease. Thus, our studies revealed a key role for SORLA in mediating BDNF trophic signaling by regulating the intracellular location of TrkB.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença de Huntington/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de LDL/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Proteínas Relacionadas a Receptor de LDL/genética , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Transporte Proteico , Proteínas Tirosina Quinases/genética , Receptor trkB , Receptores de LDL/genética , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/genética
8.
PLoS One ; 8(6): e65920, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776568

RESUMO

A growing body of evidence suggests a role for soluble alpha-amyloid precursor protein (sAPPalpha) in pathomechanisms of Alzheimer disease (AD). This cleavage product of APP was identified to have neurotrophic properties. However, it remained enigmatic what proteins, targeted by sAPPalpha, might be involved in such neuroprotective actions. Here, we used high-resolution two-dimensional polyacrylamide gel electrophoresis to analyze proteome changes downstream of sAPPalpha in neurons. We present evidence that sAPPalpha regulates expression and activity of CDK5, a kinase that plays an important role in AD pathology. We also identified the cytoprotective chaperone ORP150 to be induced by sAPPalpha as part of this protective response. Finally, we present functional evidence that the sAPPalpha receptor SORLA is essential to mediate such molecular functions of sAPPalpha in neurons.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Quinase 5 Dependente de Ciclina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Células Cultivadas , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C
9.
Int J Biochem Cell Biol ; 45(7): 1410-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23612019

RESUMO

Human serum has the potential for mesenchymal progenitor cell recruitment in repair of articular cartilage lesions. It is unclear which factor(s) in serum mediate this migratory effect. Our goal was to identify cell recruiting factors in human serum fractions obtained by ion exchange chromatography. The recruiting activity of serum fractions on human subchondral mesenchymal progenitor cells was analyzed using 96-well chemotaxis assays. Protein composition of recruiting serum fractions were analyzed by mass spectrometry and showed 58 potential candidates. Fibronectin, gelsolin, lumican, thrombospondin-1 and WNT-9a were identified as key candidates for progenitor cell recruitment. Only human plasma derived and recombinant fibronectin showed significant recruiting activity on progenitors reaching 50-90% of the recruiting activity of normal human serum. Presence of fibronectin in all human serum fractions with recruiting activity was verified by Western blot analysis. This study shows that fibronectin is a key factor in human serum to recruit mesenchymal progenitor cells and might be involved in subchondral mesenchymal progenitor cell migration into cartilage defects after microfracture.


Assuntos
Cartilagem Articular/metabolismo , Quimiotaxia/fisiologia , Fibronectinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cartilagem Articular/lesões , Diferenciação Celular , Células Cultivadas , Fibronectinas/sangue , Humanos
10.
Proteomics ; 13(1): 179-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23152153

RESUMO

Mitochondria fulfill many tissue-specific functions in cell metabolism. We set out to identify differences in the protein composition of mitochondria from five tissues frequently affected by mitochondrial disorders. The proteome of highly purified mitochondria from five mouse organs was separated by high-resolution 2DE. Tissue-specific spots were identified through nano-LC/ESI-MS/MS and quantified by densitometry in ten biological replicates. We identified 87 consistently deviating spots representing 48 proteins. The percentage of variant spots ranged between 4.2% and 6.0%; 21 proteins having tissue-specific isospots. Consistent tissue-specific processing/regulation was seen for carbamoyl-phosphate-synthase, aldehyde-dehydrogenase 2, ATP-synthase α-chain, and isocitrate-dehydrogenase α-subunit. Thirty tissue-specific proteins were associated with mitochondrial disorders in humans. We further identified alcohol-dehydrogenase, catalase, quinone-oxidoreductase, cyclophilin-A, and Upf0317, a potential biotin-carboxyl-carrier protein, which had not been annotated as "mitochondrial" in Gene Ontology or MitoCarta databases. Their targeting to the mitochondria was verified by transfection of full-length GFP-tagged plasmids. Given the high evolutionary conservation of mitochondrial metabolic pathways, these data further annotate the mitochondrial proteome and advance our understanding of the pathophysiology and tissue-specificity of symptoms seen in patients with mitochondrial disorders. The generation of 2D electrophoretic maps of the mitochondrial proteome using tissue specimens in the milligram range facilitates this technique for clinical applications and biomarker research.


Assuntos
Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Mitocôndrias Musculares , Proteínas Mitocondriais , Animais , Encéfalo/metabolismo , Eletroforese em Gel Bidimensional , Expressão Gênica , Rim/metabolismo , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Distribuição Tecidual
11.
Nucleic Acids Res ; 41(2): 711-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180766

RESUMO

Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/genética , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona , Perfilação da Expressão Gênica , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mapeamento de Interação de Proteínas , Biologia de Sistemas/métodos , Transcriptoma , Transgenes
12.
J Proteome Res ; 11(6): 3295-304, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22568827

RESUMO

Glucose hypometabolism is the earliest symptom observed in the brains of Alzheimer disease (AD) patients. In a former study, we analyzed the cortical proteome of the APP23 mouse model of AD at presymptomatic age (1 month) using a 2-D electrophoresis-based approach. Interestingly, long before amyloidosis can be observed in APP23 mice, proteins associated with energy metabolism were predominantly altered in transgenic as compared to wild-type mice indicating presymptomatic changes in energy metabolism. In the study presented here, we analyzed whether the observed changes were associated with oxidative stress and confirmed our previous findings in primary cortical neurons, which exhibited altered ADP/ATP levels if transgenic APP was expressed. Reactive oxygen species produced during energy metabolism have important roles in cell signaling and homeostasis as they modify proteins. We observed an overall up-regulation of protein oxidation status as shown by increased protein carbonylation in the cortex of presymptomatic APP23 mice. Interestingly, many carbonylated proteins, such as Vilip1 and Syntaxin were associated to synaptic plasticity. This demonstrates an important link between energy metabolism and synaptic function, which is altered in AD. In summary, we demonstrate that changes in cortical energy metabolism and increased protein oxidation precede the amyloidogenic phenotype in a mouse model for AD. These changes might contribute to synaptic failure observed in later disease stages, as synaptic transmission is particularly dependent on energy metabolism.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Metabolismo Energético , Estresse Oxidativo , Animais , Doenças Assintomáticas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Carbonilação Proteica , Proteoma/metabolismo , Sinapses/fisiologia
13.
Cell Mol Neurobiol ; 32(4): 567-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22290155

RESUMO

Cell therapy with mesenchymal stromal cells (MSCs) was found to protect neurons from damage after experimental stroke and is currently under investigation in clinical stroke trials. In order to elucidate the mechanisms of MSC-induced neuroprotection, we used the in vitro oxygen­glucose deprivation (OGD) model of cerebral ischemia. Co-culture of primary cortical neurons with MSCs in a transwell co-culture system for 48 h prior to OGD-reduced neuronal cell death by 30-35%. Similar protection from apoptosis was observed with MSC-conditioned media when added 48 h or 30 min prior to OGD, or even after OGD. Western blot analysis revealed increased phosphorylation of STAT3 and Akt in neuronal cultures after treatment with MSC-conditioned media. Inhibition of the PI3K/Akt pathway completely abolished the neuroprotective potential of MSC-conditioned media, suggesting that MSCs can improve neuronal survival by an Akt-dependent anti-apoptotic signaling cascade. Using mass spectrometry, we identified plasminogen activator inhibitor-1 as an active compound in MSC-conditioned media. Thus, paracrine factors secreted by MSCs protect neurons from apoptotic cell death in the OGD model of cerebral ischemia.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/patologia , Células-Tronco Mesenquimais/fisiologia , Neurônios/fisiologia , Animais , Isquemia Encefálica/terapia , Células Cultivadas , Córtex Cerebral/patologia , Técnicas de Cocultura , Feminino , Humanos , Precondicionamento Isquêmico/métodos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Ratos , Ratos Wistar
14.
Proteome Sci ; 9: 59, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21943346

RESUMO

Parkinson's disease (PD) is histologically well defined by its characteristic degeneration of dopaminergic neurons in the substantia nigra pars compacta. Remarkably, divergent PD-related mutations can generate comparable brain region specific pathologies. This indicates that some intrinsic region-specificity respecting differential neuron vulnerability exists, which codetermines the disease progression. To gain insight into the pathomechanism of PD, we investigated protein expression and protein oxidation patterns of three different brain regions in a PD mouse model, the PINK1 knockout mice (PINK1-KO), in comparison to wild type control mice. The dysfunction of PINK1 presumably affects mitochondrial turnover by disturbing mitochondrial autophagic pathways. The three brain regions investigated are the midbrain, which is the location of substantia nigra; striatum, the major efferent region of substantia nigra; and cerebral cortex, which is more distal to PD pathology. In all three regions, mitochondrial proteins responsible for energy metabolism and membrane potential were significantly altered in the PINK1-KO mice, but with very different region specific accents in terms of up/down-regulations. This suggests that disturbed mitophagy presumably induced by PINK1 knockout has heterogeneous impacts on different brain regions. Specifically, the midbrain tissue seems to be most severely hit by defective mitochondrial turnover, whereas cortex and striatum could compensate for mitophagy nonfunction by feedback stimulation of other catabolic programs. In addition, cerebral cortex tissues showed the mildest level of protein oxidation in both PINK1-KO and wild type mice, indicating either a better oxidative protection or less reactive oxygen species (ROS) pressure in this brain region. Ultra-structural histological examination in normal mouse brain revealed higher incidences of mitophagy vacuoles in cerebral cortex than in striatum and substantia nigra. Taken together, the delicate balance between oxidative protection and mitophagy capacity in different brain regions could contribute to brain region-specific pathological patterns in PD.

15.
J Proteome Res ; 10(4): 1459-67, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21265575

RESUMO

Kainate, a glutamate analogue, activates kainate and AMPA receptors inducing strong synaptic activation. Systemic kainate application to rodents results in seizures, neurodegeneration, and neuronal remodeling in the brain. It is therefore used to investigate molecular mechanisms responsible for these conditions. We analyzed proteome alterations in murine primary cortical neurons after 24 h of kainate treatment. Our 2-D gel based proteomics approach revealed 91 protein alterations, some already associated with kainate-induced pathology. In addition, we found a large number of proteins which have not previously been reported to be associated with kainate-induced pathology. Functional classification of altered proteins revealed that they predominantly participate in mRNA splicing and cytoskeleton remodeling.


Assuntos
Ácido Caínico/farmacologia , Neurônios/fisiologia , Splicing de RNA/efeitos dos fármacos , Animais , Células Cultivadas , Eletroforese em Gel Bidimensional , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/química , Neurônios/citologia , Proteoma/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Espectrometria de Massas em Tandem/métodos
16.
J Proteomics ; 73(11): 2230-8, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20813214

RESUMO

Neurodegenerative disorders (ND) belong to the most devastating diseases in the industrialized western world. Alzheimer disease (AD) is the most prevalent among these disorders followed by Parkinson disease (PD). Huntington disease (HD) is an autosomal dominantly inherited condition with a single mutation that causes disease in almost 100% of all cases. In this review we used previously published proteomics studies on AD, PD and HD to find cellular pathways changed similarly in ND and aging. All studies employed large gel two dimensional gel electrophoresis for protein separation and mass spectrometry for protein identification. Altered proteins were subjected to a KEGG pathway analysis and altered pathways determined for each disorder and aging. We found that besides the mitochondrial oxidative phosphorylation, the proteasome system are altered in aging and ND. The proteasome facilitates protein degradation which is commonly perturbed in ND which may link neurodegeneration to its largest risk factor-aging.


Assuntos
Envelhecimento/patologia , Doenças Neurodegenerativas/patologia , Fosforilação Oxidativa , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Envelhecimento/metabolismo , Animais , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/metabolismo , Fatores de Risco
17.
Genome Biol ; 11(6): R64, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20569505

RESUMO

BACKGROUND: Dosage imbalance is responsible for several genetic diseases, among which Down syndrome is caused by the trisomy of human chromosome 21. RESULTS: To elucidate the extent to which the dosage imbalance of specific human chromosome 21 genes perturb distinct molecular pathways, we developed the first mouse embryonic stem (ES) cell bank of human chromosome 21 genes. The human chromosome 21-mouse ES cell bank includes, in triplicate clones, 32 human chromosome 21 genes, which can be overexpressed in an inducible manner. Each clone was transcriptionally profiled in inducing versus non-inducing conditions. Analysis of the transcriptional response yielded results that were consistent with the perturbed gene's known function. Comparison between mouse ES cells containing the whole human chromosome 21 (trisomic mouse ES cells) and mouse ES cells overexpressing single human chromosome 21 genes allowed us to evaluate the contribution of single genes to the trisomic mouse ES cell transcriptome. In addition, for the clones overexpressing the Runx1 gene, we compared the transcriptome changes with the corresponding protein changes by mass spectroscopy analysis. CONCLUSIONS: We determined that only a subset of genes produces a strong transcriptional response when overexpressed in mouse ES cells and that this effect can be predicted taking into account the basal gene expression level and the protein secondary structure. We showed that the human chromosome 21-mouse ES cell bank is an important resource, which may be instrumental towards a better understanding of Down syndrome and other human aneuploidy disorders.


Assuntos
Cromossomos Humanos Par 21/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Bancos de Tecidos , Animais , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Proteoma/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Fatores de Tempo , Transcrição Gênica
18.
PLoS One ; 5(2): e9242, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20169082

RESUMO

Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Quebra Cromossômica , Cromossomos de Mamíferos/genética , Dano ao DNA , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Proliferação de Células , Células Cultivadas , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Proteínas do Citoesqueleto , Eletroforese em Gel Bidimensional , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Análise de Sobrevida
19.
Electrophoresis ; 30 Suppl 1: S142-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19517494

RESUMO

At first, a short history of the beginning of 2-DE is provided. Based on the present state of the art at the time I developed a 2-DE technique in 1975 that was able to resolve complex protein extracts from mouse tissues in hundreds of protein spots. My intention was to study proteins from a global point of view. Questions of interest were, how do proteins change during embryonic development, and what is the effect of induced mutations on the protein level. At that time protein chemistry was a matter of analyzing single proteins in detail. Therefore, my approach was frequently criticized as inappropriate because it would be impossible to identify and characterize the hundreds of proteins resolved. But soon it was realized that studying total proteins gives opportunities to answer many interesting questions. This led to a research field nowadays called "proteomics". Already in the beginning of the 1980s the idea to analyze the total human proteins had come up. By entering the post-genome era it became obvious that a human proteome project is needed in order to explain the human genome in terms of its functions. The problems in realizing such a project are considered.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteínas/análise , Proteínas/genética , Proteômica/métodos , Animais , Eletroforese em Gel Bidimensional/história , Genoma Humano , História do Século XX , História do Século XXI , Humanos , Proteínas/metabolismo , Proteômica/história
20.
Stem Cells ; 27(6): 1288-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19492299

RESUMO

Progenitor cells such as mesenchymal stem cells (MSCs) have elicited great hopes for therapeutic augmentation of physiological regeneration processes, e.g., for bone fracture healing. However, regeneration potential decreases with age, which raises questions about the efficiency of autologous approaches in elderly patients. To elucidate the mechanisms and cellular consequences of aging, the functional and proteomic changes in MSCs derived from young and old Sprague-Dawley rats were studied concurrently. We demonstrate not only that MSC concentration in bone marrow declines with age but also that their function is altered, especially their migratory capacity and susceptibility toward senescence. High-resolution two-dimensional electrophoresis of the MSC proteome, under conditions of in vitro self-renewal as well as osteogenic stimulation, identified several age-dependent proteins, including members of the calponin protein family as well as galectin-3. Functional annotation clustering revealed that age-affected molecular functions are associated with cytoskeleton organization and antioxidant defense. These proteome screening results are supported by lower actin turnover and diminished antioxidant power in aged MSCs, respectively. Thus, we postulate two main reasons for the compromised cellular function of aged MSCs: (a) declined responsiveness to biological and mechanical signals due to a less dynamic actin cytoskeleton and (b) increased oxidative stress exposure favoring macromolecular damage and senescence. These results, along with the observed similar differentiation potentials, imply that MSC-based therapeutic approaches for the elderly should focus on attracting the cells to the site of injury and oxidative stress protection, rather than merely stimulating differentiation.


Assuntos
Actinas/metabolismo , Senescência Celular/fisiologia , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais/fisiologia , Estresse Oxidativo/fisiologia , Envelhecimento/fisiologia , Animais , Antioxidantes/metabolismo , Western Blotting , Contagem de Células , Movimento Celular/fisiologia , Eletroforese em Gel Bidimensional , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...