Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561218

RESUMO

Electrophysiological studies of synaptic function do not robustly report release of neuropeptides and neurotrophins. These limitations have been overcome with the presynaptic expression of optical release reporters based on green fluorescent protein and fluorogen-activating protein. Here we describe how to image neuropeptide release in Drosophila at the neuromuscular junction and in the adult brain.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38561217

RESUMO

Genetics in Drosophila have revealed the role of neuropeptides in development and behavior. However, determining when and where neuropeptides are released has been challenging. Furthermore, the cell biology underlying neuropeptide release has largely been unexplored. Thus, it has not been possible to determine whether changes in neuropeptide immunofluorescence reflect traffic and/or release, and in neurons where such changes are not detectable, conclusions about neuropeptide release have been formulated based on the assumption that electrical and Ca2+ recordings are accurate and quantitative predictors of release. Recently, the advent of optical detection of neuropeptides tagged with fluorescent proteins and fluorogen-activating proteins (FAPs) has made it feasible to directly image vesicle traffic and exocytosis that mediates neuropeptide release in peripheral synapses and in the brain. In fact, these approaches have led to the discovery of unexpected insights concerning neuropeptide release. Here procedures are presented for optimizing fluorescence imaging of neuropeptides tagged with green fluorescent protein or a FAP.

3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106047

RESUMO

Drosophila brain sLNv clock neurons release the neuropeptide PDF to control circadian rhythms. Strikingly, PDF content in sLNv terminals is rhythmic with a peak in the morning. Peak content drops because of activity-dependent release from dense-core vesicles (DCVs), but the mechanism for the daily increase in presynaptic PDF in the hours prior to release is unknown. Although transport from the soma was proposed to drive the daily increase in presynaptic PDF, live imaging in sLNv neurons shows that anterograde axonal DCV transport is constant throughout the day. Instead, capture of circulating DCVs, indicated by decreased retrograde axonal transport, rhythmically boosts presynaptic neuropeptide content. Genetic manipulations demonstrate that the late night increase in capture requires electrical activity but is independent of daily morphological changes. These results suggest that each day, during the hours of ongoing electrical activity, a toggle switches from inducing vesicle capture to triggering exocytosis, thereby maximizing daily rhythmic bursts of synaptic neuropeptide release by clock neurons.

4.
PLoS Biol ; 20(9): e3001797, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36173939

RESUMO

Falling asleep at the wrong time can place an individual at risk of immediate physical harm. However, not sleeping degrades cognition and adaptive behavior. To understand how animals match sleep need with environmental demands, we used live-brain imaging to examine the physiological response properties of the dorsal fan-shaped body (dFB) following interventions that modify sleep (sleep deprivation, starvation, time-restricted feeding, memory consolidation) in Drosophila. We report that dFB neurons change their physiological response-properties to dopamine (DA) and allatostatin-A (AstA) in response to different types of waking. That is, dFB neurons are not simply passive components of a hard-wired circuit. Rather, the dFB neurons intrinsically regulate their response to the activity from upstream circuits. Finally, we show that the dFB appears to contain a memory trace of prior exposure to metabolic challenges induced by starvation or time-restricted feeding. Together, these data highlight that the sleep homeostat is plastic and suggests an underlying mechanism.


Assuntos
Dopamina , Inanição , Animais , Drosophila , Neurônios , Plásticos , Sono , Privação do Sono
5.
PLoS Biol ; 19(6): e3001324, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34191802

RESUMO

Circadian rhythms help animals synchronize motivated behaviors to match environmental demands. Recent evidence indicates that clock neurons influence the timing of behavior by differentially altering the activity of a distributed network of downstream neurons. Downstream circuits can be remodeled by Hebbian plasticity, synaptic scaling, and, under some circumstances, activity-dependent addition of cell surface receptors; the role of this receptor respecification phenomena is not well studied. We demonstrate that high sleep pressure quickly reprograms the wake-promoting large ventrolateral clock neurons to express the pigment dispersing factor receptor (PDFR). The addition of this signaling input into the circuit is associated with increased waking and early mating success. The respecification of PDFR in both young and adult large ventrolateral neurons requires 2 dopamine (DA) receptors and activation of the transcriptional regulator nejire (cAMP response element-binding protein [CREBBP]). These data identify receptor respecification as an important mechanism to sculpt circuit function to match sleep levels with demand.


Assuntos
Adaptação Psicológica , Comportamento Animal/fisiologia , Relógios Biológicos/fisiologia , Drosophila melanogaster/fisiologia , Sono/fisiologia , Vigília/fisiologia , Envelhecimento/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Comportamento Sexual Animal , Fatores de Transcrição de p300-CBP/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875606

RESUMO

Neuropeptides control rhythmic behaviors, but the timing and location of their release within circuits is unknown. Here, imaging in the brain shows that synaptic neuropeptide release by Drosophila clock neurons is diurnal, peaking at times of day that were not anticipated by prior electrical and Ca2+ data. Furthermore, hours before peak synaptic neuropeptide release, neuropeptide release occurs at the soma, a neuronal compartment that has not been implicated in peptidergic transmission. The timing disparity between release at the soma and terminals results from independent and compartmentalized mechanisms for daily rhythmic release: consistent with conventional electrical activity-triggered synaptic transmission, terminals require Ca2+ influx, while somatic neuropeptide release is triggered by the biochemical signal IP3 Upon disrupting the somatic mechanism, the rhythm of terminal release and locomotor activity period are unaffected, but the number of flies with rhythmic behavior and sleep-wake balance are reduced. These results support the conclusion that somatic neuropeptide release controls specific features of clock neuron-dependent behaviors. Thus, compartment-specific mechanisms within individual clock neurons produce temporally and spatially partitioned neuropeptide release to expand the peptidergic connectome underlying daily rhythmic behaviors.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Drosophila , Técnicas In Vitro , Masculino , Microscopia Confocal
7.
Stem Cells ; 37(7): 948-957, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30897261

RESUMO

The prevailing view on murine hematopoiesis and on hematopoietic stem cells (HSCs) in particular derives from experiments that are related to regeneration after irradiation and HSC transplantation. However, over the past years, different experimental techniques have been developed to investigate hematopoiesis under homeostatic conditions, thereby providing access to proliferation and differentiation rates of hematopoietic stem and progenitor cells in the unperturbed situation. Moreover, it has become clear that hematopoiesis undergoes distinct changes during aging with large effects on HSC abundance, lineage contribution, asymmetry of division, and self-renewal potential. However, it is currently not fully resolved how stem and progenitor cells interact to respond to varying demands and how this balance is altered by an aging-induced shift in HSC polarity. Aiming toward a conceptual understanding, we introduce a novel in silico model to investigate the dynamics of HSC response to varying demand. By introducing an internal feedback within a heterogeneous HSC population, the model is suited to consistently describe both hematopoietic homeostasis and regeneration, including the limited regulation of HSCs in the homeostatic situation. The model further explains the age-dependent increase in phenotypic HSCs as a consequence of the cells' inability to preserve divisional asymmetry. Our model suggests a dynamically regulated population of intrinsically asymmetrically dividing HSCs as suitable control mechanism that adheres with many qualitative and quantitative findings on hematopoietic recovery after stress and aging. The modeling approach thereby illustrates how a mathematical formalism can support both the conceptual and the quantitative understanding of regulatory principles in HSC biology.


Assuntos
Envelhecimento/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Homeostase/genética , Modelos Teóricos , Animais , Diferenciação Celular , Divisão Celular , Linhagem da Célula/genética , Proliferação de Células , Senescência Celular/genética , Simulação por Computador , Células-Tronco Hematopoéticas/citologia , Camundongos , Estresse Fisiológico
8.
PLoS Biol ; 16(9): e2003389, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235201

RESUMO

Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase cell division control protein 42 (Cdc42). Here we demonstrate-using a comprehensive set of paired daughter cell analyses that include single-cell 3D confocal imaging, single-cell transplants, single-cell RNA-seq, and single-cell transposase-accessible chromatin sequencing (ATAC-seq)-that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells.


Assuntos
Divisão Celular/genética , Senescência Celular/genética , Epigênese Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento/metabolismo , Animais , Divisão Celular Assimétrica/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Agregação Celular , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Cromatina , Camundongos Endogâmicos C57BL , Transcriptoma/genética , Proteína Wnt-5a/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-29094110

RESUMO

To test the hypothesis that sleep can reverse cognitive impairment during Alzheimer's disease, we enhanced sleep in flies either co-expressing human amyloid precursor protein and Beta-secretase (APP:BACE), or in flies expressing human tau. The ubiquitous expression of APP:BACE or human tau disrupted sleep. The sleep deficits could be reversed and sleep could be enhanced when flies were administered the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Expressing APP:BACE disrupted both Short-term memory (STM) and Long-term memory (LTM) as assessed using Aversive Phototaxic Suppression (APS) and courtship conditioning. Flies expressing APP:BACE also showed reduced levels of the synaptic protein discs large (DLG). Enhancing sleep in memory-impaired APP:BACE flies fully restored both STM and LTM and restored DLG levels. Sleep also restored STM to flies expressing human tau. Using live-brain imaging of individual clock neurons expressing both tau and the cAMP sensor Epac1-camps, we found that tau disrupted cAMP signaling. Importantly, enhancing sleep in flies expressing human tau restored proper cAMP signaling. Thus, we demonstrate that sleep can be used as a therapeutic to reverse deficits that accrue during the expression of toxic peptides associated with Alzheimer's disease.

10.
Front Mol Neurosci ; 10: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286469

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated "HCN" channels, which underlie the hyperpolarization-activated current (Ih), have been proposed to play diverse roles in neurons. The presynaptic HCN channel is thought to both promote and inhibit neurotransmitter release from synapses, depending upon its interactions with other presynaptic ion channels. In larvae of Drosophila melanogaster, inhibition of the presynaptic HCN channel by the drug ZD7288 reduces the enhancement of neurotransmitter release at motor terminals by serotonin but this drug has no effect on basal neurotransmitter release, implying that the channel does not contribute to firing under basal conditions. Here, we show that genetic disruption of the sole HCN gene (Ih) reduces the amplitude of the evoked response at the neuromuscular junction (NMJ) of third instar larvae by decreasing the number of released vesicles. The anatomy of the (NMJ) is not notably affected by disruption of the Ih gene. We propose that the presynaptic HCN channel is active under basal conditions and promotes neurotransmission at larval motor terminals. Finally, we demonstrate that Ih partial loss-of-function mutant adult flies have impaired locomotion, and, thus, we hypothesize that the presynaptic HCN channel at the (NMJ) may contribute to coordinated movement.

11.
EMBO J ; 36(2): 151-164, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27940653

RESUMO

Understanding how complex tissues are formed, maintained, and regenerated through local growth, differentiation, and remodeling requires knowledge on how single-cell behaviors are coordinated on the population level. The self-renewing hair follicle, maintained by a distinct stem cell population, represents an excellent paradigm to address this question. A major obstacle in mechanistic understanding of hair follicle stem cell (HFSC) regulation has been the lack of a culture system that recapitulates HFSC behavior while allowing their precise monitoring and manipulation. Here, we establish an in vitro culture system based on a 3D extracellular matrix environment and defined soluble factors, which for the first time allows expansion and long-term maintenance of murine multipotent HFSCs in the absence of heterologous cell types. Strikingly, this scheme promotes de novo generation of HFSCs from non-HFSCs and vice versa in a dynamic self-organizing process. This bidirectional interconversion of HFSCs and their progeny drives the system into a population equilibrium state. Our study uncovers regulatory dynamics by which phenotypic plasticity of cells drives population-level homeostasis within a niche, and provides a discovery tool for studies on adult stem cell fate.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Folículo Piloso/citologia , Técnicas de Cultura de Órgãos/métodos , Células-Tronco/fisiologia , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
12.
Chemistry ; 22(38): 13446-50, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27356169

RESUMO

The atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles. The assembly of Au and Pd nanoparticles resulted in a Pd-shell formation around the Au particles. This work confirms that bimetallic aerogels are subject to reorganization processes during their gel formation.

13.
Neuron ; 90(4): 781-794, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27161526

RESUMO

The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling.


Assuntos
Comportamento Animal/fisiologia , Relógios Biológicos/fisiologia , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Atividade Motora/fisiologia , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Escuridão , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia
14.
ACS Appl Mater Interfaces ; 8(23): 14586-95, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27225061

RESUMO

Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications.

15.
Phys Chem Chem Phys ; 17(38): 24956-67, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26343297

RESUMO

Silicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation. The electrode is composed of silicon nanocrystallites below 5 nm diameter allowing a detailed investigation of interfacial characteristics of silicon owing to the high surface area. We first performed galvanostatic long-term cycling (400 times) and carried out comprehensive ex situ characterization of the cycled nanocrystalline silicon electrodes with XRD, EDXS, TEM and XPS. We modified the preparation of the electrode for post-mortem characterization to distinguish between electrolyte components and the actual SEI. The impact of the FEC additive and two different binders on the interfacial layer is studied and the occurrence of diverse compounds, in particular LiF, Li2O and phosphates, is discussed. These results help to understand general issues in SEI formation and to pave the way for the development of advanced electrolytes allowing for a long-term performance of nanostructured Si-based electrodes.

16.
Curr Biol ; 25(10): 1270-81, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25913403

RESUMO

Given the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular lesion. Sleep was increased using three independent strategies: activating the dorsal fan-shaped body, increasing the expression of Fatty acid binding protein (dFabp), or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using aversive phototaxic suppression and courtship conditioning. Each of the three independent strategies increased sleep and restored memory to rut and dnc mutants. Importantly, inducing sleep also reverses memory defects in a Drosophila model of Alzheimer's disease. Together, these data demonstrate that sleep plays a more fundamental role in modulating behavioral plasticity than previously appreciated and suggest that increasing sleep may benefit patients with certain neurological disorders.


Assuntos
Adenilil Ciclases/genética , Comportamento Animal/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Sono/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster/genética , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Isoxazóis/farmacologia , Masculino , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Mutação , Compostos Organofosforados/farmacologia , Receptores de GABA/genética , Reserpina/farmacologia , Sono/efeitos dos fármacos
17.
J Exp Biol ; 217(Pt 10): 1725-36, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24526728

RESUMO

Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-ß (PLCß) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , FMRFamida/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Animais , Ácido Araquidônico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Contração Muscular , Fosfolipases Tipo C/metabolismo
18.
ACS Appl Mater Interfaces ; 6(4): 2922-8, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24456383

RESUMO

Ordered mesoporous carbide-derived carbon (OM-CDC) with a specific surface area as high as 2900 m(2) g(-1) was used as a model system in a supercapacitor setup based on an ionic liquid (IL; 1-ethyl-3-methylimidazolium tetrafluoroborate) electrolyte. Our study systematically investigates the effect of surface functional groups on IL-based carbon supercapacitors. Oxygen and chlorine functionalization was achieved by air oxidation and chlorine treatment, respectively, to introduce well-defined levels of polarity. The latter was analyzed by means of water physisorption isotherms at 298 K, and the functionalization level was quantified with X-ray photoelectron spectroscopy. While oxygen functionalization leads to a decreased capacitance at higher power densities, surface chlorination significantly improves the rate capability. A high specific capacitance of up to 203 F g(-1) was observed for a chlorinated OM-CDC sample with a drastically increased rate capability in a voltage range of ±3.4 V.

19.
Nat Cell Biol ; 14(9): 935-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22885771

RESUMO

Regulated assembly and disassembly, or turnover, of integrin-mediated cell-extracellular matrix (ECM) adhesions is essential for dynamic cell movements and long-term tissue maintenance. For example, in Drosophila, misregulation of integrin turnover disrupts muscle-tendon attachment at myotendinous junctions (MTJs). We demonstrate that mechanical force, which modulates integrin activity, also regulates integrin and intracellular adhesion complex (IAC) turnover in vivo. Using conditional mutants to alter the tensile force on MTJs, we found that the proportion of IAC components undergoing turnover inversely correlated with the force applied on MTJs. This effect was disrupted by point mutations in ß-integrin that interfere with ECM-induced conformational changes and activation of ß-integrin or integrin-mediated cytoplasmic signalling. These mutants also disrupted integrin dynamics at MTJs during larval development. Together, these data suggest that specific ß-integrin-mediated signals regulate adhesion turnover in response to tension during tissue formation. We propose that integrin-ECM adhesive stability is continuously controlled by force in vivo through integrin-dependent auto-regulatory feedback mechanisms so that tissues can quickly adapt to and withstand mechanical stresses.


Assuntos
Junções Célula-Matriz/fisiologia , Drosophila/fisiologia , Matriz Extracelular/fisiologia , Cadeias beta de Integrinas/metabolismo , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Junções Célula-Matriz/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/fisiologia , Drosophila/genética , Drosophila/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação Puntual , Estresse Mecânico , Tendões/metabolismo , Tendões/fisiologia
20.
J Neurosci ; 30(44): 14724-34, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048131

RESUMO

Neuropeptides are found in both mammals and invertebrates and can modulate neural function through activation of G-protein-coupled receptors (GPCRS). The precise mechanisms by which many of these GPCRs modulate specific signaling cascades to regulate neural function are not well defined. We used Drosophila melanogaster as a model to examine both the cellular and behavioral effects of DPKQDFMRFamide, the most abundant peptide encoded by the dFMRF gene. We show that DPKQDFMRFamide enhanced synaptic transmission through activation of two G-protein-coupled receptors, Fmrf Receptor (FR) and Dromyosupressin Receptor-2 (DmsR-2). The peptide increased both the presynaptic Ca(2+) response and the quantal content of released transmitter. Peptide-induced modulation of synaptic function could be abrogated by depleting intracellular Ca(2+) stores or by interfering with Ca(2+) release from the endoplasmic reticulum through disruption of either the ryanodine receptor or the inositol 1,4,5-trisphosphate receptor. The peptide also altered behavior. Exogenous DPKQDFMRFamide enhanced fictive locomotion; this required both the FR and DmsR-2. Likewise, both receptors were required for an escape response to intense light exposure. Thus, coincident detection of a peptide by two GPCRs modulates synaptic function through effects of Ca(2+)-induced Ca(2+) release, and we hypothesize that these mechanisms are involved in behavioral responses to environmental stress.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Reação de Fuga/fisiologia , FMRFamida/fisiologia , Hormônios de Inseto/metabolismo , Neuropeptídeos/metabolismo , Precursores de Proteínas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/fisiologia , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas de Drosophila/agonistas , Feminino , Hormônios de Inseto/fisiologia , Masculino , Atividade Motora/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/metabolismo , Neurotransmissores/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos de Invertebrados/agonistas , Receptores de Peptídeos de Invertebrados/fisiologia , Receptores de Peptídeos/agonistas , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...