Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Andrology ; 9(5): 1617-1630, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33987974

RESUMO

BACKGROUND: Spermatogenesis is an elaborately organized and tightly regulated differentiation process. The spermatogenesis duration is stable within a certain species but highly variable between species of the same family. OBJECTIVES: In this study, the spermatogenesis duration of the Roborovski hamster was measured for the first time, and the spermatogenesis duration of the Chinese hamster was re-assessed. MATERIALS AND METHODS: Stage classification and cycle length measurement were carried out by labeling the dividing cells with bromodeoxyuridine and an antibody-based chromogen as well as with the periodic acid-Schiff/hematoxylin stain. Analysis was conducted using reference calculation and linear regression. Morphological measurements completed our set of methods. RESULTS: The mean duration of one seminiferous epithelium cycle was 8.58 ± 0.34 days (mean ± SEM; Phodopus roborovskii) and 16.59 ± 0.47 days (Cricetulus griseus) based on the reference calculation. Slightly higher results were obtained using linear regression analysis: 9.72 ± 0.41 days for P. roborovskii and 17.64 ± 0.61 days for C. griseus. Additionally, a newly developed exemplary flowchart was proposed for the Roborovski hamster to facilitate spermatogenesis stage classification also in other species. The Chinese hamster presented an unexpectedly high paired epididymides weight of 1.701 ± 0.046 g (mean ± SEM) although having a body weight of only 40.5 ± 0.7 g. However, no significant correlation between the relative epididymis weight and spermatogenesis duration in mammals (Spearman rank correlation: r = -0.119, p = 0.607, n = 21) or rodents could be found (r = 0.045, p = 0.903, n = 11). CONCLUSION: Our data emphasize the stability of the spermatogenesis duration within species and its remarkable variability between species. Further research is needed to identify the principal mechanisms and selection drivers that are responsible for such stability within species and the variability between species.


Assuntos
Cricetulus/fisiologia , Phodopus/fisiologia , Espermatogênese/fisiologia , Animais , Diferenciação Celular , Masculino , Epitélio Seminífero/fisiologia
2.
Bioelectromagnetics ; 41(8): 611-616, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33030760

RESUMO

The widespread use of mobile phones and Wi-Fi-based communication devices makes exposure to radiofrequency electromagnetic fields (RF-EMF) unavoidable. Previous experiments have revealed the tumor-promoting effects of non-ionizing RF-EMF in adult carcinogen-treated mice in utero. To extend these investigations, we tested whether these effects are due to the co-carcinogenicity of RF-EMF which would manifest as elevated DNA damage. Similar to previous experiments, pregnant mice were exposed to RF-EMF (Universal Mobile Telecommunication System [UMTS] standard, approximately 1,960 MHz) from day 7 post-conception (p.c.) at 0 (sham), 0.04, and 0.4 W/kg SAR. At day 14 p.c., the mice were injected with the carcinogen ethylnitrosourea (ENU, 40 mg/kg). At three time-points specifically 24, 36, and 72 h later, the pregnant females were sacrificed and the fetuses (n = 24-57) were removed. A dye (cy3) specific for adenyl adducts was used to detect DNA damage by fluorescence microscopy in the brain, liver, and lung of each fetus. Compared to control (0 W/kg SAR), exposure to RF-EMF had no effect on the formation of DNA adducts in the inspected tissues. We conclude that increased adenyl formation of DNA by RF-EMF exposure is not a valid explanation for the previously reported tumor-promoting effects of RF-RMF. Our findings may help to gain a deeper insight into the biological effects of RF-EMF exposure in the context of malignancy. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Dano ao DNA , Campos Eletromagnéticos/efeitos adversos , Etilnitrosoureia/efeitos adversos , Feto/metabolismo , Feto/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Relação Dose-Resposta a Droga , Feto/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/efeitos da radiação , Camundongos
3.
Front Microbiol ; 10: 496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915063

RESUMO

Temperature is an important factor regulating the production of the greenhouse gas CH4. Structure and function of the methanogenic microbial communities are often drastically different upon incubation at 45°C versus 25°C or 35°C, but are also different in different soils. However, the extent of taxonomic redundancy within each functional group and the existence of different temperature-dependent microbial community network modules are unknown. Therefore, we investigated paddy soils from Italy and the Philippines and a desert soil from Utah (United States), which all expressed CH4 production upon flooding and exhibited structural and functional differences upon incubation at three different temperatures. We continued incubation of the pre-incubated soils (Liu et al., 2018) by changing the temperature in a factorial manner. We determined composition, abundance and function of the methanogenic archaeal and bacterial communities using HiSeq Illumina sequencing, qPCR and analysis of activity and stable isotope fractionation, respectively. Heatmap analysis of operational taxonomic units (OTU) from the different incubations gave detailed insights into the community structures and their putative functions. Network analysis showed that the microbial communities in the different soils were all organized within modules distinct for the three incubation temperatures. The diversity of Bacteria and Archaea was always lower at 45°C than at 25 or 35°C. A shift from 45°C to lower temperatures did not recover archaeal diversity, but nevertheless resulted in the establishment of structures and functions that were largely typical for soil at moderate temperatures. At 25 and 35°C and after shifting to one of these temperatures, CH4 was always produced by a combination of acetoclastic and hydrogenotrophic methanogenesis being consistent with the presence of acetoclastic (Methanosarcinaceae, Methanotrichaceae) and hydrogenotrophic (Methanobacteriales, Methanocellales, Methanosarcinaceae) methanogens. At 45°C, however, or after shifting from moderate temperatures to 45°C, only the Philippines soil maintained such combination, while the other soils were devoid of acetoclastic methanogens and consumed acetate instead by syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis. Syntrophic acetate oxidation was apparently achieved by Thermoanaerobacteraceae, which were especially abundant in Italian paddy soil and Utah desert soil when incubated at 45°C. Other bacterial taxa were also differently abundant at 45°C versus moderate temperatures, as seen by the formation of specific network modules. However, the archaeal OTUs with putative function in acetoclastic or hydrogenotrophic methanogenesis as well as the bacterial OTUs were usually not identical across the different soils and incubation conditions, and if they were, they suggested the existence of mesophilic and thermophilic ecotypes within the same OTUs. Overall, methanogenic function was determined by the bacterial and/or archaeal community structures, which in turn were to quite some extent determined by the incubation temperature, albeit largely individually in each soil. There was quite some functional redundancy as seen by different taxonomic community structures in the different soils and at the different temperatures.

4.
Environ Microbiol ; 21(5): 1702-1717, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30680883

RESUMO

The floodplain of the Amazon River is a large source for the greenhouse gas methane, but the soil microbial communities and processes involved are little known. We studied the structure and function of the methanogenic microbial communities in soils across different inundation regimes in the Cunia Reserve, encompassing nonflooded forest soil (dry forest), occasionally flooded Igapo soils (dry Igapo), long time flooded Igapo soils (wet Igapo) and sediments from Igarape streams (Igarape). We also investigated a Transect (four sites) from the water shoreline into the dry forest. The potential and resilience of the CH4 production process were studied in the original soil samples upon anaerobic incubation and again after artificial desiccation and rewetting. Bacterial and archaeal 16S rRNA genes and methanogenic mcrA were always present in the soils, except in dry forest soils where mcrA increased only upon anaerobic incubation. NMDS analysis showed a clear effect of desiccation and rewetting treatments on both bacterial and archaeal communities. However, the effects of the different sites were less pronounced, with the exception of Igarape. After anaerobic incubation, methanogenic taxa became more abundant among the Archaea, while there was only little change among the Bacteria. Contribution of hydrogenotrophic methanogenesis was usually around 40%. After desiccation and rewetting, we found that Firmicutes, Methanocellales and Methanosarcinaceae became the dominant taxa, but rates and pathways of CH4 production stayed similar. Such change was also observed in soils from the Transects. The results indicate that microbial community structures of Amazonian soils will in general be strongly affected by flooding and drainage events, while differences between specific field sites will be comparatively minor.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Microbiologia do Solo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Brasil , Dessecação , Inundações , Microbiota , RNA Ribossômico 16S/genética , Floresta Úmida , Solo/química
5.
Front Microbiol ; 8: 785, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529503

RESUMO

Rice paddies in central Thailand are flooded either by irrigation (irrigated rice) or by rain (rain-fed rice). The paddy soils and their microbial communities thus experience permanent or arbitrary submergence, respectively. Since methane production depends on anaerobic conditions, we hypothesized that structure and function of the methanogenic microbial communities are different in irrigated and rain-fed paddies and react differently upon desiccation stress. We determined rates and relative proportions of hydrogenotrophic and aceticlastic methanogenesis before and after short-term drying of soil samples from replicate fields. The methanogenic pathway was determined by analyzing concentrations and δ13C of organic carbon and of CH4 and CO2 produced in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis. We also determined the abundance (qPCR) of genes and transcripts of bacterial 16S rRNA, archaeal 16S rRNA and methanogenic mcrA (coding for a subunit of the methyl coenzyme M reductase) and the composition of these microbial communities by T-RFLP fingerprinting and/or Illumina deep sequencing. The abundances of genes and transcripts were similar in irrigated and rain-fed paddy soil. They also did not change much upon desiccation and rewetting, except the transcripts of mcrA, which increased by more than two orders of magnitude. In parallel, rates of CH4 production also increased, in rain-fed soil more than in irrigated soil. The contribution of hydrogenotrophic methanogenesis increased in rain-fed soil and became similar to that in irrigated soil. However, the relative microbial community composition on higher taxonomic levels was similar between irrigated and rain-fed soil. On the other hand, desiccation and subsequent anaerobic reincubation resulted in systematic changes in the composition of microbial communities for both Archaea and Bacteria. It is noteworthy that differences in the community composition were mostly detected on the level of operational taxonomic units (OTUs; 97% sequence similarity). The treatments resulted in change of the relative abundance of several archaeal OTUs. Some OTUs of Methanobacterium, Methanosaeta, Methanosarcina, Methanocella and Methanomassiliicoccus increased, while some of Methanolinea and Methanosaeta decreased. Bacterial OTUs within Firmicutes, Cyanobacteria, Planctomycetes and Deltaproteobacteria increased, while OTUs within other proteobacterial classes decreased.

6.
Environ Microbiol ; 18(12): 5082-5100, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27507000

RESUMO

Tropical lake sediments are a significant source for the greenhouse gas methane. We studied function (pathway, rate) and structure (abundance, taxonomic composition) of the microbial communities (Bacteria, Archaea) leading to methane formation together with the main physicochemical characteristics in the sediments of four clear water, six white water and three black water lakes of the Amazon River system. Concentrations of sulfate and ferric iron, pH and δ13 C of organic carbon were usually higher, while concentrations of carbon, nitrogen and rates of CH4 production were generally lower in white water versus clear water or black water sediments. Copy numbers of bacterial and especially archaeal ribosomal RNA genes also tended to be relatively lower in white water sediments. Hydrogenotrophic methanogenesis contributed 58 ± 16% to total CH4 production in all systems. Network analysis identified six communities, of which four were comprised mostly of bacteria found in all sediment types, while two were mostly in clear water sediment. Terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing showed that the compositions of the communities differed between the different sediment systems, statistically related to the particular physicochemical conditions and to CH4 production rates. Among the archaea, clear water, white water, and black water sediments contained relatively more Methanomicrobiales, Methanosarcinaceae and Methanocellales, respectively, while Methanosaetaceae were common in all systems. Proteobacteria, Deltaproteobacteria (Myxococcales, Syntrophobacterales, sulfate reducers) in particular, Acidobacteria and Firmicutes were the most abundant bacterial phyla in all sediment systems. Among the other important bacterial phyla, clear water sediments contained relatively more Alphaproteobacteria and Planctomycetes, whereas white water sediments contained relatively more Betaproteobacteria, Firmicutes, Actinobacteria, and Chloroflexi than the respective other sediment systems. The data showed communities of bacteria common to all sediment types, but also revealed microbial groups that were significantly different between the sediment types, which also differed in physicochemical conditions. Our study showed that function of the microbial communities may be understood on the basis of their structures, which in turn are determined by environmental heterogeneity.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Sedimentos Geológicos/química , Lagos/química , Metano/metabolismo , Filogenia , Polimorfismo de Fragmento de Restrição
7.
Environ Microbiol ; 18(9): 2868-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26337675

RESUMO

Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Methanocellaceae were equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainly Candidatus Nitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields, whereas members of anaerobic Chloroflexi and sulfate-reducing members of Deltaproteobacteria were found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice cultivation. In summary, the analyses showed that crop rotation with upland maize led to dramatic changes in the archaeal community composition whereas the bacterial community was only little affected.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Oryza , Microbiologia do Solo , Zea mays , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Produtos Agrícolas , Ecossistema , Inundações , Metano , RNA Ribossômico 16S/genética
8.
Biochem Biophys Res Commun ; 459(4): 585-90, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25749340

RESUMO

The vast majority of in vitro and in vivo studies did not find cancerogenic effects of exposure to electromagnetic fields (RF-EMF), i.e. emitted by mobile phones and base stations. Previously published results from a pilot study with carcinogen-treated mice, however, suggested tumor-promoting effects of RF-EMF (Tillmann et al., 2010). We have performed a replication study using higher numbers of animals per group and including two additional exposure levels (0 (sham), 0.04, 0.4 and 2 W/kg SAR). We could confirm and extend the originally reported findings. Numbers of tumors of the lungs and livers in exposed animals were significantly higher than in sham-exposed controls. In addition, lymphomas were also found to be significantly elevated by exposure. A clear dose-response effect is absent. We hypothesize that these tumor-promoting effects may be caused by metabolic changes due to exposure. Since many of the tumor-promoting effects in our study were seen at low to moderate exposure levels (0.04 and 0.4 W/kg SAR), thus well below exposure limits for the users of mobile phones, further studies are warranted to investigate the underlying mechanisms. Our findings may help to understand the repeatedly reported increased incidences of brain tumors in heavy users of mobile phones.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Neoplasias Induzidas por Radiação/etiologia , Exposição Ambiental , Humanos
9.
PLoS One ; 9(10): e110128, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330320

RESUMO

The study of of the distribution of microorganisms through space (and time) allows evaluation of biogeographic patterns, like the species-area index (z). Due to their high dispersal ability, high reproduction rates and low rates of extinction microorganisms tend to be widely distributed, and they are thought to be virtually cosmopolitan and selected primarily by environmental factors. Recent studies have shown that, despite these characteristics, microorganisms may behave like larger organisms and exhibit geographical distribution. In this study, we searched patterns of spatial diversity distribution of bacteria and archaea in a contiguous environment. We collected 26 samples of a lake sediment, distributed in a nested grid, with distances between samples ranging from 0.01 m to 1000 m. The samples were analyzed using T-RFLP (Terminal restriction fragment length polymorphism) targeting mcrA (coding for a subunit of methyl-coenzyme M reductase) and the genes of Archaeal and Bacterial 16S rRNA. From the qualitative and quantitative results (relative abundance of operational taxonomic units) we calculated the similarity index for each pair to evaluate the taxa-area and distance decay relationship slopes by linear regression. All results were significant, with mcrA genes showing the highest slope, followed by Archaeal and Bacterial 16S rRNA genes. We showed that the microorganisms of a methanogenic community, that is active in a contiguous environment, display spatial distribution and a taxa-area relationship.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Metano/biossíntese , Filogenia , Archaea/genética , Bactérias/genética , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
10.
Radiat Res ; 182(4): 435-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25251701

RESUMO

Female Wistar rats, from an age of 14 days to 19 months, were exposed in the head region for 2 h per day, 5 days per week, to a GSM-modulated 900 MHz radiofrequency electromagnetic field (RF-EMF). The average specific absorption rates (SAR) in the brain were 0 (sham), 0.7, 2.5 and 10 W/kg. To ensure a primary exposure of the head region, rats were fixed in restraining tubes of different sizes according to their increasing body weight. During the experiment, a set of 4 behavioral and learning tests (rotarod, Morris water maze, 8-arm radial maze, open field) were performed 3 times in juvenile, adult and presenile rats. In these tests, no profound differences could be identified between the groups. Only presenile rats of the cage control group showed a lower activity in two of these tests compared to the other groups presumably due to the lack of daily handling. The rotarod data revealed on some testing days significantly longer holding times for the sham-exposed rat vs. the exposed rat, but these findings were not consistent. During the first year, body weights of sham-exposed and exposed rats were not different from those of the cage controls, and thereafter only marginally lower, so that the effect of stress as confounder was probably negligible. The results of this study do not indicate harmful effects of long-term RF-EMF exposure even when begun at an early age on subsequent development, learning skills and behavior in rats, even at relatively high SAR values.


Assuntos
Comportamento Animal/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Memória/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Comportamento Animal/fisiologia , Temperatura Corporal/efeitos da radiação , Peso Corporal/efeitos da radiação , Telefone Celular , Feminino , Aprendizagem em Labirinto/efeitos da radiação , Gravidez , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod
11.
Radiat Res ; 181(6): 617-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24844649

RESUMO

Sixteen male Djungarian hamsters, serving as their own controls, were individually exposed to RF-EMF (900 MHz, GSM modulation) at 0 (sham), 0.08, 0.4 or 4 W/kg specific absorption rate (SAR) in specially constructed rectangular waveguides. Exposure duration was one week per condition, followed by one week without exposure. Once per day, the temperatures of the hamsters' back fur (a surrogate for skin temperature) and the cornea of the eye (a surrogate for body temperature), were measured by infrared thermography. Oxygen, carbon dioxide and humidity were measured continuously in the ambient and exhaled air. Food and water consumption, as well as body weight were recorded once per week. Only at the highest SAR level were the following effects observed: fur temperatures were elevated by approximately 0.5°C (P < 0.001), while the temperatures of the eyes' surface were not affected; food consumption was lowered (P < 0.05), while water consumption and body weight were not affected; the production of carbon dioxide was lowered during the day (P < 0.01) and unaffected during the night, while oxygen consumption levels remained unaffected and finally the respiratory quotient (carbon dioxide production divided by oxygen consumption) was lower during the day (P < 0.05) and also somewhat lower during the night (not significant). The results demonstrate the usefulness of our methods for experiments dealing with metabolic effects of RF-EMF exposure in rodents. They also confirm the assumption that even though the metabolism is reduced at high SAR levels, the body core temperature is being kept constant by the energy uptake from the RF-EMF exposure which is able to physiologically compensate for the reduced metabolism.


Assuntos
Dióxido de Carbono/metabolismo , Campos Eletromagnéticos/efeitos adversos , Oxigênio/metabolismo , Animais , Cricetinae , Umidade , Masculino , Phodopus
12.
Environ Microbiol ; 16(6): 1682-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24118927

RESUMO

Methanogenic microbial communities in soil and sediment function only when the environment is inundated and anoxic. In contrast to submerged soils, desiccation of lake sediments happens only rarely. However, some predictions suggest that extreme events of drying will become more common in the Amazon region, and this will promote an increase in sediments drying and exposure. We asked whether and how such methanogenic communities can withstand desiccation stress. Therefore, we determined the rates and pathways of CH(4) production (analysis of CH(4) and δ(13) C of CH(4), CO(2) and acetate), the copy numbers of bacterial and archaeal 16S rRNA genes and mcrA genes (quantitative PCR), and the community composition of Archaea and Bacteria (T-RFLP and pyrosequencing) in oxbow lake sediments of rivers in the Brazilian Amazon region. The rivers were of white water, black water and clear water type. The measurements were done with sediment in fresh state and after drying and rewetting. After desiccation and rewetting the composition of both, the archaeal and bacterial community changed. Since lake sediments from white water rivers exhibited only negligible methanogenic activity, probably because of relatively high iron and low organic matter content, they were not further analysed. The other sediments produced CH(4), with hydrogenotrophic methanogenesis usually accounting for > 50% of total activity. After desiccation and rewetting, archaeal and bacterial gene copy numbers decreased. The bacterial community showed a remarkable increase of Clostridiales from about 10% to > 30% of all Bacteria, partially caused by proliferation of specific taxa as the numbers of OTU shared with fresh sediment decreased from about 9% to 3%. Among the Archaea, desiccation specifically enhanced the relative abundance of either Methanocellales (black water) and/or Methanosarcinaceae (clear water). Despite the changes in gene copy numbers and composition of the microbial community, rates of CH(4) production even increased after desiccation-rewetting, demonstrating that the function of the methanogenic microbial community had not been impaired. This result indicates that the increase in extreme events of drying may increase methane production in flooded sediments.


Assuntos
Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Bacilos Gram-Positivos Formadores de Endosporo/genética , Brasil , Desidratação , Dosagem de Genes , Genes Arqueais , Genes Bacterianos , Lagos/microbiologia , Metano/biossíntese , Microbiota/genética , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estresse Fisiológico
13.
Environ Microbiol ; 15(9): 2588-602, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23763330

RESUMO

Irrigated rice fields in Uruguay are temporarily established on soils used as cattle pastures. Typically, 4 years of cattle pasture are alternated with 2 years of irrigated rice cultivation. Thus, oxic upland conditions are rotated with seasonally anoxic wetland conditions. Only the latter conditions are suitable for the production of CH4 from anaerobic degradation of organic matter. We studied soil from a permanent pasture as well as soils from different years of the pasture-rice rotation hypothesizing that activity and structure of the bacterial and archaeal communities involved in production of CH4 change systematically with the duration of either oxic or anoxic conditions. Soil samples were taken from drained fields, air-dried and used for the experiments. Indeed, methanogenic archaeal gene copy numbers (16S rRNA, mcrA) were lower in soil from the permanent pasture than from the pasture-rice alternation fields, but within the latter, there was no significant difference. Methane production started to accumulate after 16 days and 7 days of anoxic incubation in soil from the permanent pasture and the pasture-rice alternation fields respectively. Then, CH4 production rates were slightly higher in the soils used for pasture than for rice production. Analysis of δ(13) C in CH4, CO2 and acetate in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis, indicated that CH4 was mainly (58-75%) produced from acetate, except in the permanent pasture soil (42%). Terminal restriction fragment length polymorphism (T-RFLP) of archaeal 16S rRNA genes showed no difference among the soils from the pasture-rice alternation fields with Methanocellaceae and Methanosarcinaceae as the main groups of methanogens, but in the permanent pasture soil, Methanocellaceae were relatively less abundant. T-RFLP analysis of bacterial 16S rRNA genes allowed the distinction of permanent pasture and fields from the pasture-rice rotation, but nevertheless with a high similarity. Pyrosequencing of bacterial 16S rRNA genes generally revealed Firmicutes as the dominant bacterial phylum, followed by Proteobacteria, Acidobacteria and Actinobacteria. We conclude that a stable methanogenic microbial community established once pastures have been turned into management by pasture-rice alternation despite the fact that 2 years of wetland conditions were followed by 4 years of upland conditions that were not suitable for CH4 production.


Assuntos
Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Microbiologia do Solo , Agricultura , Archaea/classificação , Bactérias/classificação , Dióxido de Carbono/metabolismo , Metano/química , Metano/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Solo/química , Uruguai
14.
Front Microbiol ; 3: 4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291691

RESUMO

Addition of straw is common practice in rice agriculture, but its effect on the path of microbial CH(4) production and the microbial community involved is not well known. Since straw from rice (C3 plant) and maize plants (C4 plant) exhibit different δ(13)C values, we compared the effect of these straw types using anoxic rice field soils from Italy and China, and also a soil from Thailand that had previously not been flooded. The temporal patterns of production of CH(4) and its major substrates H(2) and acetate, were slightly different between rice straw and maize straw. Addition of methyl fluoride, an inhibitor of acetoclastic methanogenesis, resulted in partial inhibition of acetate consumption and CH(4) production. The δ(13)C of the accumulated CH(4) and acetate reflected the different δ(13)C values of rice straw versus maize straw. However, the relative contribution of hydrogenotrophic methanogenesis to total CH(4) production exhibited a similar temporal change when scaled to CH(4) production irrespectively of whether rice straw or maize straw was applied. The composition of the methanogenic archaeal communities was characterized by terminal restriction fragment length polymorphism (T-RFLP) analysis and was quantified by quantitative PCR targeting archaeal 16S rRNA genes or methanogenic mcrA genes. The size of the methanogenic communities generally increased during incubation with straw, but the straw type had little effect. Instead, differences were found between the soils, with Methanosarcinaceae and Methanobacteriales dominating straw decomposition in Italian soil, Methanosarcinaceae, Methanocellales, and Methanobacteriale in China soil, and Methanosarcinaceae and Methanocellales in Thailand soil. The experiments showed that methanogenic degradation in different soils involved different methanogenic population dynamics. However, the path of CH(4) production was hardly different between degradation of rice straw versus maize straw and was also similar for the different soil types.

15.
Biol Reprod ; 84(1): 124-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20826727

RESUMO

In mammals, the duration of the cycle of the seminiferous epithelium (DCSE) largely differs between species, but is remarkably stable within a species, usually showing variations of 1%-3%. It is difficult to change the DCSE, e.g., by hormones or chemicals. Initial experiments, employing quantitative RT-PCR, aimed at investigating the diurnal profiles of the clock genes Arntl (previously called Bmal1) and Per1 in testes and kidneys of Djungarian hamsters (Phodopus sungorus). While the testicular levels of Arntl were almost constant, clear diurnal variations were identified for Per1. In order to clarify whether day length (T-cycle) is a factor for DSCE, adult male hamsters (n = 20 per group) were exposed to normal (T = 24 h), prolonged (T = 25 h), or shortened (T = 23 h) T-cycles, with cycles thus being longer or shorter by 4.2% compared to the normal condition. Exposure lasted for 43 days, during which the activity of the animals was recorded to confirm entrainment. DCSE was estimated by incorporation of bromodeoxyuridine in dividing cells and the immunohistochemical localization of labeled cells in stages I-XII of the seminiferous epithelium. Despite the low variability of the results and the close agreement with previously published data, no effects of prolonged or shortened T-cycles on DCSE could be identified (24 h: 7.98 ± 0.05 days; 23 h: 7.94 ± 0.04 days; 25 h: 7.91 ± 0.03 days; P > 0.05). The results strongly indicate that the high temporal precision of spermatogenesis is independent of the central circadian clock.


Assuntos
Ritmo Circadiano/fisiologia , Espermatogênese/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Cricetinae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Phodopus , Fotoperíodo , Fatores de Tempo
16.
FEMS Microbiol Ecol ; 73(2): 215-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20491920

RESUMO

The microbial community structure was investigated together with the path of methane production in Italian rice field soil incubated at moderate (35 degrees C) and high (45 degrees C) temperature using terminal restriction fragment length polymorphism and stable isotope fractionation. The structure of both the archaeal and bacterial communities differed at 35 degrees C compared with 45 degrees C, and acetoclastic and hydrogenotrophic methanogenesis dominated, respectively. Changing the incubation of the 45 degrees C soil to different temperatures (25, 30, 35, 40, 45, 50 degrees C) resulted in a dynamic change of both microbial community structure and stable isotope fractionation. In all treatments, acetate first accumulated and then decreased. Propionate was also transiently produced and consumed. It is noteworthy that acetate was also consumed at thermophilic conditions, although archaeal community composition and stable isotope fractionation indicated that acetoclastic methanogenesis did not operate. Instead, acetate must have been consumed by syntrophic acetate oxidizers. The transient accumulation and subsequent consumption of acetate at thermophilic conditions was specifically paralleled by terminal restriction fragments characteristic for clostridial cluster I, whereas those of clostridial clusters I and III, Acidaminococcaceae and Heliobacteraceae, paralleled the thermophilic turnover of both acetate and propionate.


Assuntos
Acetatos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Metano/biossíntese , Propionatos/metabolismo , Microbiologia do Solo , Temperatura , Archaea/genética , Bactérias/genética , DNA Arqueal/genética , DNA Bacteriano/genética , Ecossistema , Itália , Oryza/microbiologia , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise
17.
Environ Microbiol ; 11(7): 1844-53, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19508556

RESUMO

The microbial community in anoxic rice field soil produces CH(4) over a wide temperature range up to 55°C. However, at temperatures higher than about 40°C, the methanogenic path changes from CH(4) production by hydrogenotrophic plus acetoclastic methanogenesis to exclusively hydrogenotrophic methanogenesis and simultaneously, the methanogenic community consisting of Methanosarcinaceae, Methanoseataceae, Methanomicrobiales, Methanobacteriales and Rice Cluster I (RC-1) changes to almost complete dominance of RC-1. We studied changes in structure and function of the methanogenic community with temperature to see whether microbial members of the community were lost or their function impaired by exposure to high temperature. We characterized the function of the community by the path of CH(4) production measuring δ(13)C in CH(4) and CO(2) and calculating the apparent fractionation factor (α(app)) and the structure of the community by analysis of the terminal restriction fragment length polymorphism (T-RFLP) of the microbial 16S rRNA genes. Shift of the temperature from 45°C to 35°C resulted in a corresponding shift of function and structure, especially when some 35°C soil was added to the 45°C soil. The bacterial community (T-RFLP patterns), which was much more diverse than the archaeal community, changed in a similar manner upon temperature shift. Incubation of a mixture of 35°C and 50°C pre-incubated methanogenic rice field soil at different temperatures resulted in functionally and structurally well-defined communities. Although function changed from a mixture of acetoclastic and hydrogenotrophic methanogenesis to exclusively hydrogenotrophic methanogenesis over a rather narrow temperature range of 42-46°C, each of these temperatures also resulted in only one characteristic function and structure. Our study showed that temperature conditions defined structure and function of the methanogenic microbial community.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Biodiversidade , Metano/metabolismo , Microbiologia do Solo , Temperatura , Archaea/classificação , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Impressões Digitais de DNA , Metagenoma , Oryza/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Coloração e Rotulagem
18.
Chemosphere ; 47(8): 797-806, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12079075

RESUMO

In anoxic rice fields methane is produced by either reduction of CO2 or cleavage of acetate. We measured the delta 13C-values of CH4 and CO2, acetate and organic carbon during time course experiments with anoxic methanogenic soil and root samples and used these values to calculate the fractions of CH4 (and acetate) produced from CO2 reduction. Comparison with radiotracer and/or inhibitor studies constrained the kinetic fractionation factors used for calculation. The fractionation factors for the conversion of CO2 to CH4 and of acetate to CH4 were on the order of alpha = 1.07 (epsilon = -70%) and epsilon > or = - 20%, respectively. The pathway of CH4 production changed with time of anoxic incubation. Anoxic slurries of rice field soil first produced CH4 predominantly (>50%) from CO2, then predominantly (>80%) from acetate and finally (after about one month) according to the theoretically expected ratio (33% CO2 and 67% acetate). Anoxic rice roots, on the other hand, initially produced CH4 exclusively from CO2, followed by contribution of acetate of about 40-60%. Rice roots also produced acetate that partially originated (< or = 1 30%) from reduction of CO2 as determined by calculation of isotopic fractionation using fractionation factors from the literature. The results demonstrate that there is quite some variability in pathways of CH4 production, and also indicate that isotopic fractionation factors may be different in different habitats and change with time.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Dióxido de Carbono/química , Isótopos de Carbono/análise , Cinética , Metano/química , Oryza , Oxirredução , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...