Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22262, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097636

RESUMO

Staphylococci, notably biofilm-forming Staphylococcus epidermidis, have been recognized as global nosocomial pathogens in medical device-related infections. Their potential to attach to and form biofilm on indwelling catheters are significant factors impeding conventional treatment. Due to their extensive antimicrobial and antibiofilm actions, antimicrobial peptides (AMPs) have attracted interest as promising alternative compounds for curing difficult-to-treat, biofilm-forming bacterial infections. Cecropin A-melittin or CM, a well-known hybrid peptide, exhibits broad-spectrum antimicrobial activity, however it also possesses high toxicity. In the current study, a series of hybrid CM derivatives was designed using an amino acid substitution strategy to explore potential antibacterial and antibiofilm peptides with low toxicity. Among the derivatives, CM-10K14K showed the least hemolysis along with potent antibacterial activity against biofilm-forming S. epidermidis (MICs = 3.91 µg/mL) and rapid killing after 15 min exposure (MBCs = 7.81 µg/mL). It can prevent the formation of S. epidermidis biofilm and also exhibited a dose-dependent eradication activity on mature or established S. epidermidis biofilm. In addition, it decreased the development of biofilm by surviving bacteria, and formation of biofilm on the surface of CM-10K14K-impregnated catheters. Released CM-10K14K decreased planktonic bacterial growth and inhibited biofilm formation by S. epidermidis in a dose-dependent manner for 6 and 24 h post-exposure. Impregnation of CM-10K14K prevented bacterial attachment on catheters and thus decreased formation of extensive biofilms. SEM images supported the antibiofilm activity of CM-10K14K. Flow cytometry analysis and TEM images demonstrated a membrane-active mechanism of CM-10K14K, inducing depolarization and permeabilization, and subsequent membrane rupture leading to cell death. The presence of an interaction with bacterial DNA was verified by gel retardation assay. These antibacterial and antibiofilm activities of CM-10K14K suggest its potential application to urinary catheters for prevention of biofilm-forming colonization or for treatment of medical devices infected with S. epidermidis.


Assuntos
Lisina , Staphylococcus epidermidis , Lisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus , Biofilmes , Testes de Sensibilidade Microbiana
2.
Sci Rep ; 13(1): 3507, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864083

RESUMO

The main cause of non-typhoidal Salmonella (NTS) infection in humans is ingestion of contaminated animal-derived foods such as eggs, poultry and dairy products. These infections highlight the need to develop new preservatives to increase food safety. Antimicrobial peptides (AMPs) have the potential to be further developed as food preservative agents and join nisin, the only AMP currently approved, for use as a preservative in food. Acidocin J1132ß, a bacteriocin produced by probiotic Lactobacillus acidophilus, displays no toxicity to humans, however it exhibits only low and narrow-spectrum antimicrobial activity. Accordingly, four peptide derivatives (A5, A6, A9, and A11) were modified from acidocin J1132ß by truncation and amino acid substitution. Among them, A11 showed the most antimicrobial activity, especially against S. Typhimurium, as well as a favorable safety profile. It tended to form an α-helix structure upon encountering negatively charged-mimicking environments. A11 caused transient membrane permeabilization and killed bacterial cells through membrane depolarization and/or intracellular interactions with bacterial DNA. A11 maintained most of its inhibitory effects when heated, even when exposed to temperatures up to 100 °C. Notably, it inhibited drug-resistant S. Typhimurium and its monophasic variant strains. Furthermore, the combination of A11 and nisin was synergistic against drug-resistant strains in vitro. Taken together, this study indicated that a novel antimicrobial peptide derivative (A11), modified from acidocin J1132ß, has the potential to be a bio-preservative to control S. Typhimurium contamination in the food industry.


Assuntos
Anti-Infecciosos , Nisina , Animais , Humanos , Salmonella typhimurium , Nisina/farmacologia , Sorogrupo , Peptídeos Antimicrobianos , Ração Animal
4.
Sci Rep ; 12(1): 15852, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151303

RESUMO

Antimicrobial peptides (AMPs) are being developed as potent alternative treatments to conventional antibiotics which are unlikely to induce bacterial resistance. They can be designed and modified to possess several druggable properties. We report herein a novel hybrid peptide of modified aurein (A3) and cathelicidin (P7), or A3P7, by a flipping technique. It exhibited potent antibacterial activity against both Gram-negative and -positive pathogenic bacteria but had moderate hemolytic activity. To reduce the sequence length and toxicity, C-terminal truncation was serially performed and eight truncated derivatives (AP12-AP19) were obtained. They had significantly less hemolytic activity while preserving antibacterial activity. Secondary structures of the candidate peptides in environments simulating bacterial membranes (30 mM SDS and 50% TFE), determined by CD spectroscopy, showed α-helical structures consistent with predicted in silico 3D structural models. Among the peptides, AP19 demonstrated the best combination of broad-spectrum antibacterial activity (including toward Acinetobacter baumannii) and minimal hemolytic and cytotoxic activities. A D-form peptide (D-AP19), in which all L-enantiomers were substituted with the D-enantiomers, maintained antibacterial activity in the presence of pepsin, trypsin, proteinase K and human plasma. Both isomers exhibited potent antibacterial activity against multi-drug (MDR) and extensively-drug resistant (XDR) clinical isolates of A. baumannii comparable to the traditional antibiotic, meropenem. D-AP19 displayed rapid killing via membrane disruption and leakage of intracellular contents. Additionally, it showed a low tendency to induce bacterial resistance. Our work suggested that D-AP19 could be further optimized and developed as a novel compound potentially for fighting against MDR or XDR A. baumannii.


Assuntos
Acinetobacter baumannii , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla , Endopeptidase K/farmacologia , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Pepsina A/farmacologia , Peptídeo Hidrolases/farmacologia , Tripsina/farmacologia
5.
Adv Healthc Mater ; 11(7): e2101426, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936732

RESUMO

Antimicrobial resistance (AMR) develops when bacteria no longer respond to conventional antimicrobial treatment. The limited treatment options for resistant infections result in a significantly increased medical burden. Antimicrobial peptides offer advantages for treatment of resistant infections, including broad-spectrum activity and lower risk of resistance development. However, sensitivity to proteolytic cleavage often limits their clinical application. Here, a moldable and biodegradable colloidal nano-network is presented that protects bioactive peptides from enzymatic degradation and delivers them locally. An antimicrobial peptide, PA-13, is encapsulated electrostatically into positively and negatively charged nanoparticles made of chitosan and dextran sulfate without requiring chemical modification. Mixing and concentration of oppositely charged particles form a nano-network with the rheological properties of a cream or injectable hydrogel. After exposure to proteolytic enzymes, the formed nano-network loaded with PA-13 eliminates Pseudomonas aeruginosa during in vitro culture and in an ex vivo porcine skin model while the unencapsulated PA-13 shows no antibacterial effect. This demonstrates the ability of the nano-network to protect the antimicrobial peptide in an enzyme-challenged environment, such as a wound bed. Overall, the nano-network presents a useful platform for antimicrobial peptide protection and delivery without impacting peptide bioactivity.


Assuntos
Anti-Infecciosos , Quitosana , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Pseudomonas aeruginosa , Suínos
6.
Antibiotics (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943772

RESUMO

Mitochondria are considered a novel drug target as they play a key role in energy production and programmed cell death of eukaryotic cells. The mitochondria of malaria parasites differ from those of their vertebrate hosts, contributing to the drug selectivity and the development of antimalarial drugs. (Fxr)3, a mitochondria-penetrating peptide or MPP, entered malaria-infected red cells without disrupting the membrane and subsequently killed the blood stage of P. falciparum parasites. The effects were more potent on the late stages than on the younger stages. Confocal microscopy showed that the (Fxr)3 intensely localized at the parasite mitochondria. (Fxr)3 highly affected both the lab-strain, chloroquine-resistant K1, and freshly isolated malaria parasites. (Fxr)3 (1 ng/mL to 10 µg/mL) was rarely toxic towards various mammalian cells, i.e., mouse fibroblasts (L929), human leukocytes and erythrocytes. At a thousand times higher concentration (100 µg/mL) than that of the antimalarial activity, cytotoxicity and hemolytic activity of (Fxr)3 were observed. Compared with the known antimalarial drug, atovaquone, (Fxr)3 exhibited more rapid killing activity. This is the first report on antimalarial activity of (Fxr)3, showing localization at parasites' mitochondria.

7.
Sci Rep ; 10(1): 9117, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499514

RESUMO

Antimicrobial peptides (AMPs) are promising alternatives to classical antibiotics for the treatment of drug-resistant infections. Due to their versatility and unlimited sequence space, AMPs can be rationally designed by modulating physicochemical determinants to favor desired biological parameters and turned into novel therapeutics. In this study, we utilized key structural and physicochemical parameters, in combination with rational engineering, to design novel short α-helical hybrid peptides inspired by the well-known natural peptides, cathelicidin and aurein. By comparing homologous sequences and abstracting the conserved residue type, sequence templates of cathelicidin (P0) and aurein (A0) were obtained. Two peptide derivatives, P7 and A3, were generated by amino acid substitution based on their residue composition and distribution. In order to enhance antimicrobial activity, a hybrid analog of P7A3 was designed. The results demonstrated that P7A3 had higher antibacterial activity than the parental peptides with unexpectedly high hemolytic activity. Strikingly, C-terminal truncation of hybrid peptides containing only the α-helical segment (PA-18) and shorter derivatives confer potent antimicrobial activity with reduced hemolytic activity in a length-dependent manner. Among all, PA-13, showed remarkable broad-spectrum antibacterial activity, especially against Pseudomonas aeruginosa with no toxicity. PA-13 maintained antimicrobial activity in the presence of physiological salts and displayed rapid binding and penetration activity which resulted in membrane depolarization and permeabilization. Moreover, PA-13 showed an anti-inflammatory response via lipopolysaccharide (LPS) neutralization with dose-dependent, inhibiting, LPS-mediated Toll-like receptor activation. This study revealed the therapeutic potency of a novel hybrid peptide, and supports the use of rational design in development of new antibacterial agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Ligação Proteica , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Receptores Toll-Like/metabolismo , Catelicidinas
8.
Front Microbiol ; 11: 592220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519729

RESUMO

Foodborne illness caused by consumption of food contaminated with Salmonella is one of the most common causes of diarrheal disease and affects millions of people worldwide. The rising emergence and spread of antimicrobial resistance, especially in some serotypes of Salmonella, has raised a great awareness of public health issues worldwide. To ensure safety of the food processing chain, the development of new food preservatives must be expedited. Recently, thermal- and pH-stable antimicrobial peptides have received much attention for use in food production, and represent safe alternatives to chemical preservatives. A 12-mer cathelicidin-derived, α-helical cationic peptide, P7, displayed rapid killing activity, against strains of drug-resistant foodborne Salmonella enterica serovar Typhimurium and its monophasic variant (S. enterica serovar 4,5,12:i:-) and had minimal toxicity against mouse fibroblast cells. P7 tended to form helical structure in the membrane-mimic environments as evaluated by circular dichroism (CD) spectroscopy. The action mode of P7 at the membrane-level was affirmed by the results of flow cytometry, and confocal, scanning and transmission electron microscopy. P7 killed bacteria through binding to bacterial membranes, penetration and the subsequent accumulation in S. enterica serovar Typhimurium cytoplasm. This induced membrane depolarization, permeabilization, and sequential leakage of intracellular substances and cell death. Except for sensitivity to proteolytic digestive enzymes, P7 maintained its inhibitory activity against S. enterica serovar Typhimurium in the presence of different conditions [various salts, extreme pHs and heat (even at 100°C)]. Moreover, the peptide is unlikely to induce bacterial resistance in vitro. Taken together, this study demonstrated that the membrane-permeabilizing P7 peptide has much potential as a new antimicrobial agent for use in food processing and preservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA