Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(31): 17427-17434, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523747

RESUMO

The layered 2D van der Waals ferromagnets CrX3 (X = Cl, Br, I) show broad d-d photoluminescence (PL). Here we report preparation, structural characterization, and spectroscopic studies of all three CrX3 compounds doped with the optical impurity, Yb3+. EXAFS measurements show very similar Cr K-edge and Yb L-edge data for each doped compound, and good fits of the latter are obtained for structures having Yb3+ occupying substitutional octahedral sites. Yb-X bond lengths are systematically ∼0.25 Å larger than their Cr-X counterparts. 4 K PL measurements show efficient sensitization of Yb3+ luminescence upon photoexcitation into lattice absorption bands [Cr3+ d-d and ligand-to-metal charge-transfer (LMCT)] for all three compounds, converting their nondescript broadband d-d PL into sharp f-f emission. The PL of CrCl3:Yb3+ and CrBr3:Yb3+ occurs at energies typical for [YbX6]3- with these halides, with PL decay times of 0.5-1.0 ms at 4 K, but CrI3:Yb3+ displays anomalously low-energy Yb3+ emission and an unusually short PL decay time of only 8 µs at 4 K. Data analysis and angular overlap model (AOM) calculations show that Yb3+ in CrI3:Yb3+ has a lower spin-orbit splitting energy than reported for any other Yb3+ in any other compound. We attribute these observations to exceptionally high covalency of the Yb3+ f orbitals in CrI3:Yb3+ stemming primarily from the shallow valence-shell ionization potentials of the iodide anions.

2.
Nano Lett ; 22(14): 5681-5688, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819950

RESUMO

Overcoming the challenges of patterning luminescent materials will unlock additive and more sustainable paths for the manufacturing of next-generation on-chip photonic devices. Electrohydrodynamic (EHD) inkjet printing is a promising method for deterministically placing emitters on these photonic devices. However, the use of this technique to pattern luminescent lead halide perovskite nanocrystals (NCs), notable for their defect tolerance and impressive optical and spin coherence properties, for integration with optoelectronic devices remains unexplored. In this work, we additively deposit nanoscale CsPbBr3 NC features on photonic structures via EHD inkjet printing. We perform transmission electron microscopy of EHD inkjet printed NCs to demonstrate that the NCs' structural integrity is maintained throughout the printing process. Finally, NCs are deposited with sub-micrometer control on an array of parallel silicon nitride nanophotonic cavities and demonstrate cavity-emitter coupling via photoluminescence spectroscopy. These results demonstrate EHD inkjet printing as a scalable, precise method to pattern luminescent nanomaterials for photonic applications.

3.
Nano Lett ; 20(3): 2100-2106, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32031382

RESUMO

We have synthesized unique colloidal nanoplatelets of the two-dimensional (2D) van der Waals ferromagnet CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The CrI3 nanoplatelets have lateral dimensions of ∼25 nm and thicknesses of only ∼4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering with Curie temperatures similar to bulk CrI3, despite their small size. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of lateral nanostructures of 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.

4.
J Chromatogr A ; 1595: 248-256, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30878176

RESUMO

Adjacent lanthanides are among the most challenging elements to separate, to the extent that current separations materials would benefit from transformative improvement. Ordered mesoporous carbon (OMC) materials are excellent candidates, owing to their small mesh size and uniform morphology. Herein, OMC materials were physisorbed with bis-(2-ethylhexyl) phosphoric acid (HDEHP) and sorption of Eu3+ was investigated under static and dynamic conditions. The HDEHP-OMC materials displayed higher distribution coefficients and loading capacities than current state-of-the-art materials. Using a small, unpressurized column, a separation between Eu3+ and Nd3+ was achieved. Based on these experimental results, HDEHP-OMC have shown potential as a solid phase sorbent for chromatographic, intragroup, lanthanide separations.


Assuntos
Carbono/química , Técnicas de Química Analítica/métodos , Cromatografia , Elementos da Série dos Lantanídeos/isolamento & purificação , Ácidos Fosfóricos/química
5.
Nano Lett ; 19(3): 1931-1937, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30694072

RESUMO

Colloidal halide perovskite nanocrystals of CsPbCl3 doped with Yb3+ have demonstrated remarkably high sensitized photoluminescence quantum yields (PLQYs), approaching 200%, attributed to a picosecond quantum-cutting process in which one photon absorbed by the nanocrystal generates two photons emitted by the Yb3+ dopants. This quantum-cutting process is thought to involve a charge-neutral defect cluster within the nanocrystal's internal volume. We demonstrate that Yb3+-doped CsPbCl3 nanocrystals can be converted postsynthetically to Yb3+-doped CsPb(Cl1- xBr x)3 nanocrystals without compromising the desired high PLQYs. Nanocrystal energy gaps can be tuned continuously from Eg ≈ 3.06 eV (405 nm) in CsPbCl3 down to Eg ≈ 2.53 eV (∼490 nm) in CsPb(Cl0.25Br0.75)3 while retaining a constant PLQY above 100%. Reducing Eg further causes a rapid drop in PLQY, interpreted as reflecting an energy threshold for quantum cutting at approximately twice the energy of the Yb3+2F7/2 → 2F5/2 absorption threshold. These data demonstrate that very high quantum-cutting energy efficiencies can be achieved in Yb3+-doped CsPb(Cl1- xBr x)3 nanocrystals, offering the possibility to circumvent thermalization losses in conventional solar technologies. The presence of water during anion exchange is found to have a deleterious effect on the Yb3+ PLQYs but does not affect the nanocrystal shapes or morphologies, or even reduce the excitonic PLQYs of analogous undoped CsPb(Cl1- xBr x)3 nanocrystals. These results provide valuable information relevant to the development and application of these unique materials for spectral-shifting solar energy conversion technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA