Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21256, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040754

RESUMO

Understanding the thermal decomposition behavior of TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is a major focus in energetic materials research because of safety issues. Previous research and modelling efforts have suggested benzo-monofurazan condensation producing H2O is the initiating decomposition step. However, early evolving CO2 (m/z 44) along with H2O (m/z 18) evolution have been observed by mass spectrometric monitoring of head-space gases in both constant heating rate and isothermal decomposition studies. The source of the CO2 has not been explained, until now. With the recent successful synthesis of 13C6-TATB (13C incorporated into the benzene ring), the same experiments have been used to show the source of the CO2 is the early breakdown of the TATB ring, not adventitious C from impurities and/or adsorbed CO2. A shift in mass m/z 44 (CO2) to m/z 45 is observed throughout the decomposition process indicating the isotopically labeled 13C ring breakdown occurs at the onset of thermal decomposition along with furazan formation. Partially labeled (N18O2)3-TATB confirms at least some of the oxygen comes from the nitro-groups. This finding has a significant bearing on decomposition computational models for prediction of energy release and deflagration to detonation transitions, with respect to conditions which currently do not recognize this oxidation step.

2.
Appl Spectrosc ; 67(9): 1049-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24067636

RESUMO

Uranium ore concentrates (UOCs) are produced at mining facilities from the various types of uranium-bearing ores using several processes that can include different reagents, separation procedures, and drying conditions. The final UOC products can consist of different uranium species, which are important to identify to trace interdicted samples back to their origins. Color has been used as a simple indicator; however, visual determination is subjective and no chemical information is provided. In this work, we report the application of near-infrared (NIR) spectroscopy as a non-contact, non-destructive method to rapidly analyze UOC materials for species and/or process information. Diffuse reflectance spectra from 350 to 2500 nm were measured from a number UOC samples that were also characterized by X-ray diffraction. Combination and overtone bands were used to identify the amine and hydroxyl-containing species, such as ammonium uranates or ammonium uranyl carbonate, while other uranium oxide species (e.g., uranium trioxide [UO3] and triuranium octoxide [U3O8]) exhibit absorption bands arising from crystal field effects and electronic transitions. Principal component analysis was used to classify the different UOC materials.

3.
Anal Chem ; 83(4): 1328-35, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21235258

RESUMO

High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system.


Assuntos
Eletroforese Capilar/métodos , Espectroscopia de Ressonância Magnética/métodos , Integração de Sistemas , Fluorocarbonos/química , Fluorocarbonos/isolamento & purificação , Ácido Trifluoracético/química , Ácido Trifluoracético/isolamento & purificação
4.
Anal Chem ; 76(5): 1249-56, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14987078

RESUMO

A laser ablation/ionization mass spectrometer system is described for the direct analysis of solids, particles, and fibers. The system uses a quadrupole ion trap operated in an ion storage mode, coupled with a reflectron time-of-flight mass spectrometer). The sample is inserted radially into the ring electrode, and an imaging system allows direct viewing and selected analysis of the sample. Measurements identified trace contaminants of Ag, Sn, and Sb in a Pb target with single laser shot experiments. Resolution (m/Delta m) of 1500 and detection limits of approximately 10 pg have been achieved with a single laser pulse. The system configuration and related operating principles for accurately measuring low concentrations of isotopes are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...