Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20453, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760906

RESUMO

Durum wheat (Triticum turgidum ssp. durum) is globally cultivated for pasta, couscous, and bulgur production. With the changing climate and growing world population, the need to significantly increase durum production to meet the anticipated demand is paramount. This review summarizes recent advancements in durum research, encompassing the exploitation of existing and novel genetic diversity, exploration of potential new diversity sources, breeding for climate-resilient varieties, enhancements in production and management practices, and the utilization of modern technologies in breeding and cultivar development. In comparison to bread wheat (T. aestivum), the durum wheat community and production area are considerably smaller, often comprising many small-family farmers, notably in African and Asian countries. Public breeding programs such as the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) play a pivotal role in providing new and adapted cultivars for these small-scale growers. We spotlight the contributions of these and others in this review. Additionally, we offer our recommendations on key areas for the durum research community to explore in addressing the challenges posed by climate change while striving to enhance durum production and sustainability. As part of the Wheat Initiative, the Expert Working Group on Durum Wheat Genomics and Breeding recognizes the significance of collaborative efforts in advancing toward a shared objective. We hope the insights presented in this review stimulate future research and deliberations on the trajectory for durum wheat genomics and breeding.

2.
Plant Commun ; 5(1): 100646, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415333

RESUMO

Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.


Assuntos
Genes de Plantas , Triticum , Triticum/genética , Genes de Plantas/genética , Mapeamento Cromossômico , Clonagem Molecular , Família Multigênica
3.
Plant Genome ; : e20410, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974527

RESUMO

Tetraploid wheats (Triticum turgidum L.), including durum wheat (T. turgidum ssp. durum (Desf.) Husn.), are important crops with high nutritional and cultural values. However, their production is constrained by sensitivity to environmental conditions. In search of adaptive genetic signatures tracing historical selection and hybridization events, we performed genome scans on two datasets: (1) Durum Global Diversity Panel comprising a total of 442 tetraploid wheat and wild progenitor accessions including durum landraces (n = 286), domesticated emmer (T. turgidum ssp. dicoccum (Schrank) Thell.; n = 103) and wild emmer (T. turgidum ssp. dicoccoides (Korn. ex Asch. & Graebn.) Thell.; n = 53) wheats genotyped using the 90K single nucleotide polymorphism (SNP) array, and (2) a second dataset comprising a total 121 accessions of nine T. turgidum subspecies including wild emmer genotyped with >100 M SNPs from whole-genome resequencing. The genome scan on the first dataset detected six outlier loci on chromosomes 1A, 1B, 3A (n = 2), 6A, and 7A. These loci harbored important genes for adaptation to abiotic stresses, phenological responses, such as seed dormancy, circadian clock, flowering time, and key yield-related traits, including pleiotropic genes, such as HAT1, KUODA1, CBL1, and ZFN1. The scan on the second dataset captured a highly differentiated region on chromosome 2B that shows significant differentiation between two groups: one group consists of Georgian (T. turgidum ssp. paleocolchicum A. Love & D. Love) and Persian (T. turgidum ssp. carthlicum (Nevski) A. Love & D. Love) wheat accessions, while the other group comprises all the remaining tetraploids including wild emmer. This is consistent with a previously reported introgression in this genomic region from T. timopheevii Zhuk. which naturally cohabit in the Georgian and neighboring areas. This region harbored several adaptive genes, including the thermomorphogenesis gene PIF4, which confers temperature-resilient disease resistance and regulates other biological processes. Genome scans can be used to fast-track germplasm housed in gene banks and in situ; which helps to identify environmentally resilient accessions for breeding and/or to prioritize them for conservation.

4.
Front Plant Sci ; 14: 1182548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900749

RESUMO

Durum wheat is more susceptible to Fusarium head blight (FHB) than other types or classes of wheat. The disease is one of the most devastating in wheat; it reduces yield and end-use quality and contaminates the grain with fungal mycotoxins such as deoxynivalenol (DON). A panel of 265 Canadian and European durum wheat cultivars, as well as breeding and experimental lines, were tested in artificially inoculated field environments (2019-2022, inclusive) and two greenhouse trials (2019 and 2020). The trials were assessed for FHB severity and incidence, visual rating index, Fusarium-damaged kernels, DON accumulation, anthesis or heading date, maturity date, and plant height. In addition, yellow pigment and protein content were analyzed for the 2020 field season. To capture loci underlying FHB resistance and related traits, GWAS was performed using single-locus and several multi-locus models, employing 13,504 SNPs. Thirty-one QTL significantly associated with one or more FHB-related traits were identified, of which nine were consistent across environments and associated with multiple FHB-related traits. Although many of the QTL were identified in regions previously reported to affect FHB, the QTL QFhb-3B.2, associated with FHB severity, incidence, and DON accumulation, appears to be novel. We developed KASP markers for six FHB-associated QTL that were consistently detected across multiple environments and validated them on the Global Durum Panel (GDP). Analysis of allelic diversity and the frequencies of these revealed that the lines in the GDP harbor between zero and six resistance alleles. This study provides a comprehensive assessment of the genetic basis of FHB resistance and DON accumulation in durum wheat. Accessions with multiple favorable alleles were identified and will be useful genetic resources to improve FHB resistance in durum breeding programs through marker-assisted recurrent selection and gene stacking.

5.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176097

RESUMO

Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Melhoramento Vegetal , Ploidias , Aclimatação , Polimorfismo de Nucleotídeo Único
6.
Front Plant Sci ; 14: 1145371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998679

RESUMO

Introduction: Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods: We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results: Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion: The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.

7.
Commun Biol ; 5(1): 826, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978056

RESUMO

Durable crop disease resistance is an essential component of global food security. Continuous pathogen evolution leads to a breakdown of resistance and there is a pressing need to characterize new resistance genes for use in plant breeding. Here we identified an accession of wild emmer wheat (Triticum turgidum ssp. dicoccoides), PI 487260, that is highly resistant to multiple stripe rust isolates. Genetic analysis revealed resistance was conferred by a single, incompletely dominant gene designated as Yr84. Through bulked segregant analysis sequencing (BSA-Seq) we identified a 52.7 Mb resistance-associated interval on chromosome 1BS. Detected variants were used to design genetic markers for recombinant screening, further refining the interval of Yr84 to a 2.3-3.3 Mb in tetraploid wheat genomes. This interval contains 34 candidate genes encoding for protein domains involved in disease resistance responses. Furthermore, KASP markers closely-linked to Yr84 were developed to facilitate marker-assisted selection for rust resistance breeding.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
8.
Mol Plant Microbe Interact ; 34(10): 1094-1102, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34096764

RESUMO

Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Hordeum , Imunidade Vegetal , Proteínas Quinases , Triticum , Hordeum/enzimologia , Hordeum/imunologia , Doenças das Plantas , Proteínas Quinases/genética , Triticum/enzimologia , Triticum/imunologia
9.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572141

RESUMO

Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is the first to apply the linear regression residuals as drought plasticity scores while considering the variation in flowering phenology and traits under non-stress conditions. We characterized the genomic architecture of 17 complex traits and their drought plasticity scores for quantitative trait loci (QTL) mapping, using a mapping population derived from a cross between durum wheat (Triticum turgidum ssp. durum) and wild emmer wheat (T. turgidum ssp. dicoccoides). We identified 79 QTLs affected observed traits and their plasticity scores, of which 33 reflected plasticity in response to water stress and exhibited epistatic interactions and/or pleiotropy between the observed and plasticity traits. Vrn-B3 (TaTF1) residing within an interval of a major drought-escape QTL was proposed as a candidate gene. The favorable alleles for most of the plasticity QTLs were contributed by wild emmer wheat, demonstrating its high potential for wheat improvement. Our study presents a new approach for the quantification of plant adaptation to various stresses and provides new insights into the genetic basis of wheat complex traits under water-deficit stress.


Assuntos
Aclimatação/genética , Cromossomos de Plantas/genética , Secas , Locos de Características Quantitativas , Triticum/fisiologia , Alelos , Mapeamento Cromossômico , Estresse Fisiológico , Tetraploidia
10.
Nature ; 588(7837): 277-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239791

RESUMO

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimento
11.
Pathogens ; 9(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481482

RESUMO

The destructive wheat powdery mildew disease is caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt). PmG3M, derived from wild emmer wheat Triticum dicoccoides accession G305-3M, is a major gene providing a wide-spectrum resistance against Bgt. PmG3M was previously mapped to wheat chromosome 6B using an F6 recombinant inbred line (RIL) mapping population generated by crossing G305-3M with the susceptible T. durum wheat cultivar Langdon (LDN). In the current study, we aimed to explore the defense mechanisms conferred by PmG3M against Bgt. Histopathology of fungal development was characterized in artificially inoculated leaves of G305-3M, LDN, and homozygous RILs using fluorescence and light microscopy. G305-3M exhibited H2O2 accumulation typical of a hypersensitive response, which resulted in programmed cell death (PCD) in Bgt-penetrated epidermal cells, while LDN showed well-developed colonies without PCD. In addition, we observed a post-haustorial resistance mechanism that arrested the development of fungal feeding structures and pathogen growth in both G305-3M and resistant RIL, while LDN and a susceptible RIL displayed fully developed digitated haustoria and massive accumulation of fungal biomass. In contrast, both G305-3M and LDN exhibited callose deposition in attempt to prevent fungal invasion, supporting this as a mechanism of a basal defense response not associated with PmG3M resistance mechanism per se. The presented results shed light on the resistance mechanisms conferred by PmG3M against wheat powdery mildew.

12.
J Exp Bot ; 71(9): 2561-2572, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31942623

RESUMO

The wild emmer wheat (Triticum turgidum ssp. dicoccoides; WEW) yellow (stripe) rust resistance genes Yr15, YrG303, and YrH52 were discovered in natural populations from different geographic locations. They all localize to chromosome 1B but were thought to be non-allelic based on differences in resistance response. We recently cloned Yr15 as a Wheat Tandem Kinase 1 (WTK1) and show here that these three resistance loci co-segregate in fine-mapping populations and share an identical full-length genomic sequence of functional Wtk1. Independent ethyl methanesulfonate (EMS)-mutagenized susceptible yrG303 and yrH52 lines carried single nucleotide mutations in Wtk1 that disrupted function. A comparison of the mutations for yr15, yrG303, and yrH52 mutants showed that while key conserved residues were intact, other conserved regions in critical kinase subdomains were frequently affected. Thus, we concluded that Yr15-, YrG303-, and YrH52-mediated resistances to yellow rust are encoded by a single locus, Wtk1. Introgression of Wtk1 into multiple genetic backgrounds resulted in variable phenotypic responses, confirming that Wtk1-mediated resistance is part of a complex immune response network. WEW natural populations subjected to natural selection and adaptation have potential to serve as a good source for evolutionary studies of different traits and multifaceted gene networks.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença , Doenças das Plantas , Poaceae/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poaceae/microbiologia
13.
Plant J ; 101(3): 555-572, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571297

RESUMO

Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.


Assuntos
Fósforo/metabolismo , Locos de Características Quantitativas/genética , Enxofre/metabolismo , Triticum/genética , Cruzamento , Grão Comestível , Fenótipo , Sementes/genética , Sementes/fisiologia , Triticum/fisiologia
14.
Theor Appl Genet ; 133(1): 119-131, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31562566

RESUMO

KEY MESSAGE: Genetic dissection of GPC and TKW in tetraploid durum × WEW RIL population, based on high-density SNP genetic map, revealed 12 GPC QTLs and 11 TKW QTLs, with favorable alleles for 11 and 5 QTLs, respectively, derived from WEW. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW) was shown to exhibit high grain protein content (GPC) and therefore possess a great potential for improvement of cultivated wheat nutritional value. Genetic dissection of thousand kernel weight (TKW) and grain protein content (GPC) was performed using a high-density genetic map constructed based on a recombinant inbred line (RIL) population derived from a cross between T. durum var. Svevo and WEW acc. Y12-3. Genotyping of 208 F6 RILs with a 15 K wheat single nucleotide polymorphism (SNP) array yielded 4166 polymorphic SNP markers, of which 1510 were designated as skeleton markers. A total map length of 2169 cM was obtained with an average distance of 1.5 cM between SNPs. A total of 12 GPC QTLs and 11 TKW QTLs were found under five different environments. No significant correlations were found between GPC and TKW across all environments. Four major GPC QTLs with favorable alleles from WEW were found on chromosomes 4BS, 5AS, 6BS and 7BL. The 6BS GPC QTL coincided with the physical position of the NAC transcription factor TtNAM-B1, underlying the cloned QTL, Gpc-B1. Comparisons of the physical intervals of the GPC QTLs described here with the results previously reported in other durum × WEW RIL population led to the discovery of seven novel GPC QTLs. Therefore, our research emphasizes the importance of GPC QTL dissection in diverse WEW accessions as a source of novel alleles for improvement of GPC in cultivated wheat.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Meio Ambiente , Proteínas de Grãos/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Triticum/genética , Análise de Variância , Cromossomos de Plantas/genética , Endogamia , Escore Lod
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...